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Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national
standards bodies (ISO member bodies). The work of preparing International Standards is nor-
mally carried out through ISO technical committees. Each member body interested in a subject
for which a technical committee has been established has the right to be represented on that
committee. International organizations, governmental and non-governmental, in liaison with
ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical
Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives,
Part 3.

Draft International Standards adopted by the technical committees are circulated to the member
bodies for voting. Publication as an International Standard requires approval by at least 75%
of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this International Standard
may be the subject of patent rights. ISO shall not be held responsible for identifying any or all
such patent rights.

International Standard ISO 10303–2fd was prepared by Technical Committee ISO/TC 184,
Industrial automation systems and integration, Subcommittee SC4, Industrial data.

This International Standard is organized as a series of parts, each published separately. The
parts of ISO 10303 fall into one of the following series: description methods, integrated resources,
application interpreted constructs, application protocols, abstract test suites, implementation
methods, and conformance methods. The series are described in ISO 10301-1.

A complete list of parts of ISO 10303 is available from the Internet:
<http://www.nist.gov/sc4/editing/step/titles/>

This part of ISO 10303 is a member of the application protocol series.

Annexes A, B, C, D and E are a normative part of this International Standard. Annexes G, H,
J, K and L are for information only.
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Introduction

ISO 10303 is an International Standard for the computer-interpretable representation and ex-
change of product data. The objective is to provide a neutral mechanism capable of describing
product data throughout the life cycle of a product independent from any particular system.
The nature of this description makes it suitable not only for neutral file exchange, but also as a
basis for implementing and sharing product databases and archiving.

Major subdivisions of this International Standard are:

— TBD

Application protocols provide the basis for developing implementations of ISO 10303 and ab-
stract test suites for the conformance testing of AP implementations.

Clause 1 defines the scope of the application protocol and summarizes the functionality and data
covered by the AP. Clause 3 lists the words defined in this part of ISO 10303 and gives pointers
to words defined elsewhere. An application activity model that is the basis for the definition of
the scope is provided in annex F. The information requirements of the application are specified
in clause 4 using terminology appropriate to the application. A graphical representation of the
information requirements, referred to as the application reference model, is given in annex G.

Resource constructs are interpreted to meet the information requirements. This interpretation
produces the application interpreted model (AIM). This interpretation, given in 5.1, shows the
correspondence between the information requirements and the AIM. The short listing of the AIM
specifies the interface to the integrated resources and is given in 5.2. Note that the definitions
and EXPRESS provided in the the integrated resources for constructs used in the AIM may
include select list items and subtypes which are not imported into the AIM. The expanded
listing given in annex A contains the complete EXPRESS for the AIM without annotation. A
graphical representation of the AIM is given in annex H. Additional requirements for specific
implementation methods are given in annex C.

In this International Standard the same English language words may be used to refer to an
object in the real world or to a concept, and as the name of an EXPRESS data type that
represents this object or concept. The following typographical convention is used to distinguish
between these. If a word or phrase occurs in the same typeface as narrative text, the referent
is the object or concept. If the word or phrase occurs in a bold typeface, the referent is the
EXPRESS data type. Names of EXPRESS schemas also occur in a bold typeface.

The name of an EXPRESS data type may be used to refer to the data type itself, or to an
instance of the data type. The disctinction between these uses is normally clear from the context.
If there is a likelihood of ambiguity, the phrase ‘entity data type’ or ‘instance(s) of’ is included
in the text.

Quotation marks “ ” are used to denote text that is copied from another document. Inverted
commas ‘’ are used to denote particular string values.
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Several components of this part of ISO 10303 are available in electronic form. This access is
provided through the specification of Universal Resource Locators (URLs) that identify the
location of these files on the Internet. If there is difficulty accessing these sites contact the ISO
Central Secretariat or the ISO TC184/SC4 Secretariat directly at: sc4@cme.nist.gov.
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Industrial automation systems and integration —
Product data representation and exchange —
Part 2fd :
Application protocol: Fluid dynamics data

1 Scope

This part of ISO 10303 specifies the use of the integrated resources necessary for the scope and
information requirements for the explicit representation of computer-readable data in the disci-
pline of fluid dynamics. This standard will be applicable to all industries requiring representation
of a fluid dynamic flowfield, including aerospace, automotive, and shipbuilding industries.

NOTE The application activity model in annex F provides a graphical representation of the processes
and information flows which are the basis for the definition of the scope of this part of ISO 10303.

The following are within the scope of this part of ISO 10303:

— digital data on structured and unstructured grids describing steady or unsteady fluid dy-
namics flowfields;

— data describing the fluid dynamics model including grid description, grid inter-connectivity,
boundary conditions, and modeling parameters;

— data from solutions of equation sets commonly used in fluid dynamics analysis: Navier-
Stokes equations, Euler equations, linear and nonlinear potential flow equations, small-
disturbance equations, boundary layer equations, and stream function equations;

— single-phase flow of a liquid or a gas;

— laminar flow, transitional flow, turbulent flow (direct representation of turbulence, or rep-
resented by Reynolds-averaged data);

— incompressible or compressible flow;

— unsteady flow;

— perfect gas, or variable chemical composition (equilibrium flow, frozen flow, or finite-rate
chemical reactions);

— data regarding the exchange of energy by molecular transport including convection, con-
duction, and advectation;
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— rotating flowfields (e.g., turbomachinery);

— inertial and rotating frames of reference;

— Newtonian transport laws;

— reference to product geometry;

— administrative information necessary to track the approval and configuration control of the
analysis of a product;

The following are outside the scope of this part of ISO 10303:

— representations of geometry;

— gross flow in networks (e.g., piping and ducting);

— the use that application programs may make of the data;

— the means by which application programs modify the data;

— the form in which the data is stored internal to an application.

The validity, accuracy and completeness of the data for a particular purpose are determined
entirely by the applications’ software.

NOTE 1 The following are outside the scope of this edition of this part of ISO 10303 but are expected
to be inside the scopes of later editions of this part:

— two- and three-phase flow;

— free surface flow;

— non-continuum flow (e.g., direct simulation of Monte Carlo data);

— data from non-analytical sources (e.g., experimental simulation such as wind tunnel or water tank
testing, and product test such as flight test or sea trials);

— data regarding the exchange of energy by radiation;

— non-Newtonian transport laws;

— electro-magnetic interactions with a fluid;

— plasmas.
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2 Normative references

The following normative documents contain provisions which, through reference in this text,
constitute provisions of this international standard. For dated references, subsequent amend-
ments to, or revisions of, any of these publications do not apply. However, parties to agreements
based on this international standard are encouraged to investigate the possibility of applying the
most recent editions of the normative documents indicated below. For undated references, the
latest edition of the normative document referred to applies. Members of ISO and IEC maintain
registers of currently valid International Standards.

ISO 10303-1:1994, Industrial automation systems and integration — Product data representa-
tion and exchange — Part 1: Overview and fundamental principles.

ISO 10303-11:1994, Industrial automation systems and integration — Product data representa-
tion and exchange — Part 11: Description methods: The EXPRESS language reference manual.

ISO 10303-5w:20001), Industrial automation systems and integration — Product data represen-
tation and exchange — Part 5w: Integrated resource: Mesh-based topology.

ISO/IEC 8824-1:1995, Information technology — Abstract Syntax Notation One (ASN.1): Spec-
ification of basic notation.

3 Terms, definitions, abbreviations, and symbols

3.1 Terms defined in ISO 10303-1

— application protocol (AP)

— integrated resource (IR)

3.2 Other definitions

3.2.1
BC patch
the subrange of a face of a zone where a given boundary-condition is applied

3.2.2
computational fluid dynamics
the set of knowledge and tools used to generate exact or approximate solutions to the mathe-
matical equations governing the motion of a fluid (gas or liquid).

NOTE 1 The underlying knowledge is implemented in computing codes or application programs.

1)To be published.
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Table 1 – Symbols for dimensional units

Symbol Description
M mass unit
L length unit
T time unit
Θ temperature unit
α angle unit

Table 2 – Symbols for coordinate systems

Symbol Description
x, y, z coordinates in a Cartesian system
r, θ, z coordinates in a Cylindrical system
r, θ, φ coordinates in a Spherical system
ξ, η, ζ coordinates in an auxiliary system

3.2.3
global BC data
boundary-condition data applied globally to a BC patch; for example, specifying a uniform total
pressure at an inflow boundary

3.2.4
local BC data
boundary-condition data applied at each grid point of a BC patch; an example of this is varying
total pressure specified at each vertex of a BC patch

3.3 Abbreviations

CFD computational fluid dynamics

3.4 Symbols

Symbols for dimensional units are given in Table 1.

EXAMPLE 1 A length has dimensions L, an area has dimensions L2, and a velocity has dimensions
L/T (alternatively written as LT−1).

Symbols for coordinate systems are given in Table 2.

Associated with the coordinate systems are unit vectors, the symbols for which are given in
Table 3.

Symbols for physical properties are given in Table 4.
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Table 3 – Symbols for unit vectors

Symbol Direction Symbol Direction Symbol Direction
êx x-direction êr r-direction êξ ξ-direction
êy y-direction êθ θ-direction êη η-direction
êz z-direction êφ φ-direction êζ ζ-direction

Table 4 – Symbols for physical properties

Symbol Description
ρ static density
p static pressure
T static temperature
e static internal energy per unit mass
h static enthalpy per unit mass
s entropy
ρ0 stagnation density
p0 stagnation pressure
T0 stagnation temperature
e0 stagnation energy per unit mass
h0 stagnation enthalpy per unit mass
ρe0 stagnation energy per unit volume
ν kinematic viscosity (ν = µ/ρ)
µ molecular viscosity
νt eddy viscosity
k thermal conductivity coefficient
R ideal gas constant (R = cp − cv)
cp specific heat at constant pressure
cv specific heat at constant volume

Symbols for nondimensional parameters are given in Table 5
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Table 5 – Symbols for nondimensional parameters and related scales

Symbol Description
M Mach number (M = q/c)
q Mach velocity scale
c Mach speed of sound scale
Re Reynolds number (Re = V L/ν )
V Reynolds velocity scale
L Reynolds length scale
ν Reynolds kinematic viscosity scale
Pr Prandtl number (Pr = µcp/k)
k Prandtl thermal conductivity scale
µ Prandtl molecular viscosity scale
cp Prandtl specific heat scale
γ specific heat ratio (γ = cp/cv)
cp specific heat at constant pressure
cv specific heat at constant volume
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4 Information requirements

This clause specifies the information required for (TBD — APPLICATION PURPOSE).

The information requirements are specified as a set of units of functionality, application objects,
and application assertions. These assertions pertain to individual application objects and to
relationships between application objects. The information requirements are defined using the
terminology of the subject area of this application protocol.

NOTE 1 A graphical representation of the information requirements is given in annex G.

NOTE 2 The information requirements correspond to those of the activities identified as being within
the scope of this application protocol in annex F.

NOTE 3 The mapping table specified in 5.1 shows how the integrated resources are used to meet the
information requirements of this application protocol.

4.1 Units of functionality

This subclause specifies the units of functionality for the Fluid dynamics data application pro-
tocol. This part of ISO 10303 specifies the following units of functionality:

— UoF1

The units of functionality and a description of the functions that each UoF supports are given
below. The application objects included in the UoFs are defined in 4.2.

4.1.1 UoF1

4.2 Application objects

This subclause specifies the application objects for the Fluid dynamics data application protocol.
Each application object is an atomic element that embodies a unique application concept and
contains attributes specifying the data elements of the object. The application objects and their
definitions are given below.

4.3 Application assertions

This subclause specifies the application assertions for the Fluid dynamics data application proto-
col. Application assertions specify the relationships between application objects, the cardinality
of the relationships, and the rules required for the integrity and validity of the application objects
and UoFs. The application assertions and their definitions are given below.
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5 Application interpreted model

5.1 Mapping table

This clause contains the mapping table that shows how each UoF and application object of
this part of ISO 10303 (see clause 4) maps to one or more AIM constructs (see annex A). The
mapping table is organized in five columns.

Column 1) Application element: Name of an application element as it appears in the application
object definition in 4.2. Application object names are written in uppercase. Attribute names
and assertions are listed after the application object to which they belong and are written in
lower case.

Column 2) AIM element: Name of an AIM element as it appears in the AIM (see annex A),
the term ‘IDENTICAL MAPPING’, or the term ‘PATH’. AIM entities are written in lower
case. Attribute names of AIM entities are referred to as <entity name> . <attribute name>.
The mapping of an application element may result in several related AIM elements. Each of
these AIM elements requires a line of its own in the table. The term ‘IDENTICAL MAPPING’
indicates that both application objects of an application assertion map to the same AIM element.
The term ‘PATH’ indicates that the application assertion maps to the entire reference path.

Column 3) Source: For those AIM elements that are interpreted from the integrated resources or
the application interpreted constructs, this is the number of the corresponding part of ISO 10303.
For those AIM elements that are created for the purpose of this part of ISO 10303, this is the
number of this part. Entities or types that are defined within the integrated resources have an
AIC as the source reference if the use of the entity or type for the mapping is within the scope
of the AIC.

Column 4) Rules: One or more numbers may be given that refer to rules that apply to the
current AIM element or reference path. For rules that are derived from relationships between
application objects, the same rule is referred to by the mapping entries of all the involved AIM
elements. The expanded names of the rules are listed after the table.

Column 5) Reference path: To describe fully the mapping of an application object, it may be
necessary to specify a reference path through several related AIM elements. The reference path
column documents the role of an AIM element relative to the AIM element in the row succeeding
it. Two or more such related AIM elements define the interpretation of the integrated resources
that satisfies the requirement specified by the application object. For each AIM element that
has been created for use within this part of ISO 10303, a reference path up to its supertype from
an integrated resource is specified.

For the expression of reference paths the following notational conventions apply:

a) [] : enclosed section constrains multiple AIM elements or sections of the reference path are
required to satisfy an information requirement;
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b) () : enclosed section constrains multiple AIM elements or sections of the reference path are
identified as alternatives within the mapping to satisfy an information requirement;

c) {} : enclosed section constrains the reference path to satisfy an information requirement;

d) <> : enclosed section constrains at one or more required reference path;

e) || : enclosed section constrains the supertype entity;

f) -> : attribute references the entity or select type given in the following row;

g) <- : entity or select type is referenced by the attribute in the following row;

h) [i] : attribute is an aggregation of which a single member is given in the following row;

i) [n] : attribute is an aggregation of which member n is given in the following row;

j) => : entity is a supertype of the entity given in the following row;

k) <= : entity is a subtype of the entity given in the following row;

l) = : the string, select, or enumeration type is constrained to a choice or value;

m) \ : the reference path expression continues on the next line.
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5.2 AIM EXPRESS short listing

This clause specifies the EXPRESS schema that uses elements from the integrated resources
and contains the types, entity specializations, rules, and functions that are specific to this
part of ISO 10303. This clause also specifies modifications to the text for constructs that
are imported from the integrated resources. The definitions and EXPRESS provided in the
integrated resources for constructs used in the AIM may include select list items and subtypes
that are not imported into the AIM. Requirements stated in the integrated resources that refer
to select list items and subtypes apply exclusively to those items that are imported into the
AIM.

EXPRESS specification:

*)
{iso standard 10303 part (11) version (4)}
SCHEMA cfd_aim;
USE FROM application_context_schema -- ISO 10303-41 (reqd for any AP)
(application_context,
application_context_element,
product_definition_context
);

USE FROM product_definition_schema -- ISO 10303-41 (reqd for any AP)
(product,
product_definition,
product_definition_formation
);

USE FROM product_property_definition_schema -- ISO 10303-41 (usually reqd)
(property_definition,
product_definition_shape
);

USE FROM product_property_representation_schema -- ISO 10303-41 (usually reqd)
(property_definition_representation,
shape_definition_representation,
shape_representation
);

USE FROM representation_schema -- ISO 10303-43 (usually reqd)
(representation,
representation_item
);

USE FROM external_reference_schema -- ISO 10304-41
(externally_defined_item
);

USE FROM mesh_topology_schema -- ISO 10303-5w
(cell_shape,
cell_shape_0D,
cell_shape_1D,
cell_shape_2D,
cell_shape_3D,
mesh_topology,
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regular_mesh_topology, -- approx ARM structured_zone
rectangular_grid,
cylindrical_grid,
pyramidal_grid,
rind, -- = ARM
irregular_mesh_topology, -- approx ARM unstructured_zone
cell,
mesh_topology_data,
mesh_cell_data,
mesh_vertex_data
);

USE FROM data_array_schema -- ISO 10303-5w
(data_class, -- = ARM
index, -- = ARM INTEGER
texts, -- = ARM LIST OF STRING
data_name, -- = ARM
adhoc_data_name, -- = ARM
standard_data_name, -- = ARM
coordinate_data_name, -- = ARM
other_data_name,
data_conversion, -- = ARM
dimensional_units, -- = ARM
index_list, -- = ARM
index_range, -- = ARM
data_array -- = ARM
);

USE FROM multiblock_schema -- ISO 10303-5w
(grid_location, -- = ARM
multiblock, -- = ARM zone_grid_connectivity
block_connectivity, -- = ARM connectivity
matched_connection,
mismatched_connection,
mismatched_region,
abutting,
overset,
overset_hole,
structured_donor, -- = ARM
unstructured_donor -- = ARM
);

USE FROM measure_schema -- ISO 10303-41
(dimensional_exponents, -- = ARM -- REFD into data_array_schema
si_unit -- REFD into data_array_schema
);

USE FROM support_resource_schema -- ISO 10303-41
(text -- REFD into data_array_schema
);

USE FROM mathematical_functions_schema -- ISO 10303-50
(explicit_table_function, -- REFD into data_array_schema
listed_real_data, -- REFD into multiblock_schema
nonnegative, -- REFD into mesh_topology_schema
positive -- REFD into mesh_topology_schema
);
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USE FROM topology_schema -- ISO 10303-42
(topological_representation_item -- REFD into mesh_topology_schema
);

(*

5.2.1 Fundamental concepts and assumptions

5.2.2 Fluid dynamics data types

5.2.2.1 Fluid dynamics data type definitions

5.2.2.1.1 cfd standard data name

A listing of standardized identifiers for the contents of a data array.

EXPRESS specification:

*)
TYPE cfd_standard_data_name = SELECT BASED_ON standard_data_name WITH
(flow_solution_data_name,
turbulence_data_name,
nondimensional_data_name,
Riemann_1D_data_name,
force_moment_data_name);

(*

5.2.2.1.2 flow solution data name

flow solution data name is an enumeration of standardized flow solution data.

EXPRESS specification:

*)
TYPE flow_solution_data_name = ENUMERATION OF

(potential,
stream_function,
density,
pressure,
temperature,
energy_internal,
enthalpy,
entropy,
entropy_approx,
density_stagnation,
pressure_stagnation,
temperature_stagnation,
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energy_stagnation,
enthalpy_stagnation,
energy_stagnation_density,
velocity_x,
velocity_y,
velocity_z,
velocity_r,
velocity_theta,
velocity_phi,
velocity_magnitude,
velocity_normal,
velocity_tangential,
velocity_sound,
velocity_sound_stagnation,
momentum_x,
momentum_y,
momentum_z,
momentum_magnitude,
energy_kinetic,
pressure_dynamic,
vorticity_x,
vorticity_y,
vorticity_z,
vorticity_magnitude,
skin_friction_x,
skin_friction_y,
skin_friction_z,
skin_friction_magnitude,
velocity_angle_x,
velocity_angle_y,
velocity_angle_z,
velocity_unit_vector_x,
velocity_unit_vector_y,
velocity_unit_vector_z,
mass_flow,
viscosity_kinematic,
viscosity_molecular,
viscosity_eddy,
thermal_conductivity,
ideal_gas_constant,
specific_heat_pressure,
specific_heat_volume,
Reynolds_stress_xx,
Reynolds_stress_xy,
Reynolds_stress_xz,
Reynolds_stress_yy,
Reynolds_stress_yz,
Reynolds_stress_zz);

END_TYPE;
(*

The meanings of the identifiers are given in Table 6.
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Table 6 – Flow solution data name identifiers

Data name identifier Description Units
potential potential: ∇φ = ~q L2/T
stream function stream function (2–D): ∇×ψ = ~q L2/T
density static density (ρ) M/L3

pressure static pressure (p) M/(LT2)
temperature static temperature (T ) Θ
energy internal static internal energy per unit mass (e) L2/T2

enthalpy static enthalpy per unit mass (h) L2/T2

entropy entropy (s) ML2/(T2Θ)
entropy approx approximate entropy (s̃ = p/ργ) L3γ−1/(Mγ−1T2)
density stagnation stagnation density (ρ0) M/L3

pressure stagnation stagnation pressure (p0) M/(LT2)
temperature stagnation stagnation temperature (T0) Θ
energy stagnation stagnation energy per unit mass (e0) L2/T2

enthalpy stagnation stagnation enthalpy per unit mass (h0) L2/T2

energy stagnation density stagnation energy per unit volume (ρe0) M/(LT2)
velocity x x-component of velocity (u = ~q ·êx) L/T
velocity y y-component of velocity (v = ~q ·êy) L/T
velocity z z-component of velocity (w = ~q ·êz) L/T
velocity r radial velocity component (~q ·êr) L/T
velocity theta velocity component in θ direction (~q ·êθ) L/T
velocity phi velocity component in φ direction (~q ·êφ) L/T
velocity magnitude velocity magnitude (q =

√
~q ·~q) L/T

velocity normal normal velocity component (~q ·n̂) L/T
velocity tangential tangential velocity component (2–D) L/T
velocity sound static speed of sound L/T
velocity sound stagnation stagnation speed of sound L/T
momentum x x-component of momentum (ρu) M/(L2T)
momentum y y-component of momentum (ρv) M/(L2T)
momentum z z-component of momentum (ρw) M/(L2T)
momentum magnitude magnitude of momentum (ρq) M/(L2T)

Continued on next page
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Table 6 — concluded from previous page
Data name identifier Description Units
energy kinetic 1

2(u2 + v2 + w2) = 1
2q

2 L2/T2

pressure dynamic 1
2ρq

2 M/(LT2)
vorticity x ωx = ∂w/∂y − ∂v/∂z = ~ω ·êx T−1

vorticity y ωy = ∂u/∂z − ∂w/∂x = ~ω ·êy T−1

vorticity z ωz = ∂v/∂x− ∂u/∂y = ~ω ·êz T−1

vorticity magnitude ω =
√
~ω ·~ω T−1

skin friction x x-component of skin friction (~τ · êx) M/(LT2)
skin friction y y-component of skin friction (~τ · êy) M/(LT2)
skin friction z z-component of skin friction (~τ · êz) M/(LT2)
skin friction magnitude skin friction magnitude (

√
~τ ·~τ) M/(LT2)

velocity angle x velocity angle (arccos(u/q) ∈ [0, 180◦)) α
velocity angle y arccos(v/q) α
velocity angle z arccos(w/q) α
velocity unit vector x x-component of velocity unit vector ((~q ·êx)/q) -
velocity unit vector y y-component of velocity unit vector ((~q ·êy)/q) -
velocity unit vector z z-component of velocity unit vector ((~q ·êz)/q) -
mass flow mass flow normal to a plane (ρ~q ·n̂) M/(L2T)
viscosity kinematic kinematic viscosity (ν = µ/ρ) L2/T
viscosity molecular molecular viscosity (µ) M/(LT)
viscosity eddy eddy viscosity (νt) L2/T
thermal conductivity thermal conductivity coefficient (k) ML/(T3Θ)
ideal gas constant ideal gas constant (R = cp − cv) L/(T2Θ)
specific heat pressure specific heat at constant pressure (cp) L2/(T2Θ)
specific heat volume specific heat at constant volume (cv) L2/(T2Θ)
Reynolds stress xx Reynolds stress −ρu′u′ M/(LT2)
Reynolds stress xy Reynolds stress −ρu′v′ M/(LT2)
Reynolds stress xz Reynolds stress −ρu′w′ M/(LT2)
Reynolds stress yy Reynolds stress −ρv′v′ M/(LT2)
Reynolds stress yz Reynolds stress −ρv′w′ M/(LT2)
Reynolds stress zz Reynolds stress −ρw′w′ M/(LT2)

5.2.2.1.3 turbulence data name

turbulence data name is an enumeration of standardized Reynolds-averaged Navier-Stokes
turbulence model variables.

EXPRESS specification:

*)
TYPE turbulence_data_name = ENUMERATION OF

(turbulent_distance,
turbulent_energy_kinetic,
turbulent_dissipation,
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Table 7 – Turbulence data name identifiers

Data name identifier Description Units
turbulent distance distance to nearest wall L
turbulent energy kinetic k = 1

2(u′u′ + v′v′ + w′w′) L2/T2

turbulent dissipation ε L2/T3

turbulent dissipation rate ε/k T−1

turbulent BB Reynolds Baldwin-Barth one-equation model RT -
turbulent SA nu tilde Spalart-Allmaras one-equation model ν̃ L2/T
turbulent SA chi S-A model χ = ν̃/ν -
turbulent SA cb1 S-A model cb1 = 0.1355 -
turbulent SA cb2 S-A model cb2 = 0.622 -
turbulent SA sigma S-A model σ = 2/3 -
turbulent SA kappa S-A model κ = 0.41 (von Karman constant) -
turbulent SA cw1 S-A model cw1 = 3.2391 -
turbulent SA cw2 S-A model cw2 = 0.3 -
turbulent SA cw3 S-A model cw3 = 2 -
turbulent SA cv1 S-A model cv1 = 7.1 -
turbulent SA ct1 S-A model ct1 = 1 -
turbulent SA ct2 S-A model ct2 = 2 -
turbulent SA ct3 S-A model ct3 = 1.2 -
turbulent SA ct4 S-A model ct4 = 0.5 -

turbulent_dissipation_rate,
turbulent_BB_Reynolds,
turbulent_SA_nu_tilde,
turbulent_SA_chi,
turbulent_SA_cb1,
turbulent_SA_cb2,
turbulent_SA_sigma,
turbulent_SA_kappa,
turbulent_SA_cw1,
turbulent_SA_cw2,
turbulent_SA_cw3,
turbulent_SA_cv1,
turbulent_SA_ct1,
turbulent_SA_ct2,
turbulent_SA_ct3,
turbulent_SA_ct4);

END_TYPE;
(*

The meaning of the identifiers is given in Table 7.

5.2.2.1.4 nondimensional data name

nondimensional data name is an enumeration of standardized nondimensional parameters.
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EXPRESS specification:

*)
TYPE nondimensional_data_name = ENUMERATION OF

(Mach,
Mach_velocity,
Mach_velocity_sound,
Reynolds,
Reynolds_velocity,
Reynolds_length,
Reynolds_viscosity_kinematic,
Prandtl,
Prandtl_thermal_conductivity,
Prandtl_viscosity_molecular,
Prandtl_specific_heat_pressure,
specific_heat_ratio,
specific_heat_ratio_pressure,
specific_heat_ratio_volume,
coef_pressure,
coef_skin_friction_x,
coef_skin_friction_y,
coef_skin_friction_z,
coef_pressure_dynamic,
coef_pressure_reference);

END_TYPE;
(*

The meanings of the identifiers are given in Table 8.

5.2.2.1.5 Riemann 1D data name

Riemann 1D data name is an enumeration of standardized Riemann data for 1-D flow.

EXPRESS specification:

*)
TYPE Riemann_1D_data_name = ENUMERATION OF

(Riemann_invariant_plus,
Riemann_invariant_minus,
characteristic_entropy,
characteristic_vorticity1,
characteristic_vorticity2,
characteristic_acoustic_plus,
characteristic_acoustic_minus);

END_TYPE;
(*

The meanings of the enumerated items are given in Table 9.
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Table 8 – Nondimensional data name identifiers

Data name identifier Description Units
Mach Mach number: M = q/c -
Mach velocity velocity scale (q) L/T
Mach velocity sound speed of sound scale (c) L/T
Reynolds Reynolds number: Re = V L/ν -
Reynolds velocity velocity scale (V ) L/T
Reynolds length length scale (L) L
Reynolds viscosity kinematic kinematic viscosity scale (ν) L2/T
Prandtl Prandtl number: Pr = µcp/k -
Prandtl thermal conductivity thermal conductivity scale (k) ML/(T3Θ)
Prandtl viscosity molecular molecular viscosity scale (µ) M/(LT)
Prandtl specific heat pressure specific heat scale (cp) L2/(T2Θ)
specific heat ratio specific heat ratio: γ = cp/cv -
specific heat ratio pressure specific heat at constant pressure (cp) L2/(T2Θ)
specific heat ratio volume specific heat at constant volume (cv) L2/(T2Θ)
coef pressure cp -
coef skin friction x ~cf ·êx -
coef skin friction y ~cf ·êy -
coef skin friction z ~cf ·êz -
coef pressure dynamic 1/2ρrefq

2
ref M/(LT2)

coef pressure reference pref M/(LT2)

Table 9 – Riemann 1-D data name identifiers

Data name identifier Description Units
Riemann invariant plus u+ 2c/(γ − 1) L/T
Riemann invariant minus u− 2c/(γ − 1) L/T
characteristic entropy p′ − ρ′/c̄2 M/(LT2)
characteristic vorticity1 v′ L/T
characteristic vorticity2 w′ L/T
characteristic acoustic plus p′ + u′/(ρ̄c̄) M/(LT2)
characteristic acoustic minus p′ − u′/(ρ̄c̄) M/(LT2)
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5.2.2.1.6 force moment data name

force moment data name is an enumeration of standardized force and moment data.

EXPRESS specification:

*)
TYPE force_moment_data_name = ENUMERATION OF

(force_x,
force_y,
force_z,
force_r,
force_theta,
force_phi,
lift,
drag,
moment_x,
moment_y,
moment_z,
moment_r,
moment_theta,
moment_phi,
moment_xi,
moment_eta,
moment_zeta,
moment_center_x,
moment_center_y,
moment_center_z,
coef_lift,
coef_drag,
coef_moment_x,
coef_moment_y,
coef_moment_z,
coef_moment_r,
coef_moment_theta,
coef_moment_phi,
coef_moment_xi,
coef_moment_eta,
coef_moment_zeta,
coef_moment_pressure_dynamic,
coef_moment_area,
coef_length);

END_TYPE;
(*

The meanings of the enumerated items are given in Table 10.
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Table 10 – Force and moment data name identifiers

Data name identifier Description Units
force x Fx = ~F ·êx ML/T2

force y Fy = ~F ·êy ML/T2

force z Fz = ~F ·êz ML/T2

force r Fr = ~F ·êr ML/T2

force theta Fθ = ~F ·êθ ML/T2

force phi Fφ = ~F ·êφ ML/T2

lift L or L′ ML/T2

drag D or D′ ML/T2

moment x Mx = ~M ·êx ML2/T2

moment y My = ~M ·êy ML2/T2

moment z Mz = ~M ·êz ML2/T2

moment r Mr = ~M ·êr ML2/T2

moment theta Mθ = ~M ·êθ ML2/T2

moment phi Mφ = ~M ·êφ ML2/T2

moment xi Mξ = ~M ·êξ ML2/T2

moment eta Mη = ~M ·êη ML2/T2

moment zeta Mζ = ~M ·êζ ML2/T2

moment center x x0 = ~r0 ·êx L
moment center y y0 = ~r0 ·êy L
moment center z z0 = ~r0 ·êz L
coef lift CL or cl -
coef drag CD or cd -
coef moment x ~CM ·êx or ~cm ·êx -
coef moment y ~CM ·êy or ~cm ·êy -
coef moment z ~CM ·êz or ~cm ·êz -
coef moment r ~CM ·êr or ~cm ·êr -
coef moment theta ~CM ·êθ or ~cm ·êθ -
coef moment phi ~CM ·êφ or ~cm ·êφ -
coef moment xi ~CM ·êξ or ~cm ·êξ -
coef moment eta ~CM ·êη or ~cm ·êη -
coef moment zeta ~CM ·êζ or ~cm ·êζ -
coef pressure dynamic 1/2ρrefq

2
ref M/(LT2)

coef area Sref L2

coef length cref L
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5.2.2.1.7 bc type

Boundary-condition types identify the equations that should be enforced at a given boundary
location. The boundary-condition types are described by bc type. Some members of bc type
completely identify the equations to impose, while others identify a general description of the
class of boundary-condition equations to impose.

bc type is subdivided into two enumeration types: bc type simple and bc type compound
which identify the simple and compound boundary-condition types respectively.

The subdivision of bc type is based on function. For simple boundary-conditions, the equations
and data are fixed; whereas, for compound boundary-conditions different sets of equations are
imposed depending on local flow conditions at the boundary.

bc type is a superset of bc type simple and bc type compound. It identifies the boundary-
condition (simple or compound) at a boundary location.

For inflow/outflow boundary-condition descriptions, 3-D inviscid compressible flow is assumed;
the 2-D equivalent should be obvious. These same boundary-conditions are typically used for
viscous cases also. This ‘3-D Euler’ assumption will be noted wherever used.

EXPRESS specification:

*)
TYPE bc_type = SELECT

(bc_type_simple,
bc_type_compound);

END_TYPE;
(*

5.2.2.1.8 bc type simple

bc type simple is an enumeration type that identifies the simple boundary-condition at a
boundary location.

In the descriptions below, Q is the solution vector, ~q is the velocity vector whose magnitude is
q, the unit normal to the boundary is n̂, and ∂()/∂n = n̂ · ∇ is differentiation normal to the
boundary.

EXPRESS specification:

*)
TYPE bc_type_simple = ENUMERATION OF

(bc_general,

c©ISO 2000 — All rights reserved 21



ISO/WD 10303-2fd:2000(E) Nxxxx

bc_Dirichlet,
bc_Neumann,
bc_extrapolate,
bc_wall_inviscid,
bc_wall_viscous_heat_flux,
bc_wall_viscous_isothermal,
bc_wall_viscous,
bc_wall,
bc_inflow_subsonic,
bc_inflow_supersonic,
bc_outflow_subsonic,
bc_outflow_supersonic,
bc_tunnel_inflow,
bc_tunnel_outflow,
bc_degenerate_line,
bc_degenerate_point,
bc_symmetry_plane,
bc_symmetry_polar,
bc_axissymmetric_wedge);

END_TYPE;
(*

Enumerated item definitions:

bc general: arbitrary conditions on Q or ∂Q/∂n;

bc Dirichlet: Dirichlet condition on Q vector;

bc Neumann: Neumann condition on ∂Q/∂n;

bc extrapolate: extrapolate Q from interior;

bc wall inviscid: inviscid (slip) wall

— normal velocity specified (default: ~q · n̂ = 0)

bc wall viscous heat flux: viscous no-slip wall with heat flux

— velocity Dirichlet (default: q = 0)

— temperature Neumann (default: adiabatic, ∂T/∂n = 0)

bc wall viscous isothermal: viscous no-slip, isothermal wall

— velocity Dirichlet (default: q = 0)

— temperature Dirichlet

bc wall viscous: viscous no-slip wall; special cases are bc wall viscous heat flux and bc -
wall viscous isothermal.

— velocity Dirichlet (default: q = 0)
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— Dirichlet or Neumann on temperature

bc wall: general wall condition; special cases are bc wall inviscid, bc wall viscous, bc -
wall viscous heat flux, and bc wall viscous isothermal

bc inflow subsonic: inflow with subsonic normal velocity

— specify 4; extrapolate 1 (3-D Euler)

bc inflow supersonic: inflow with supersonic normal velocity

— specify 5; extrapolate 0 (3-D Euler)

same as bc Dirichlet

bc outflow subsonic: outflow with subsonic normal velocity

— specify 1; extrapolate 0 (3-D Euler)

bc outflow supersonic: outflow with supersonic normal velocity

— specify 0; extrapolate 5 (3-D Euler)

same as bc Extrapolate

bc tunnel inflow: tunnel inlet (subsonic normal velocity)

— specify cross-flow velocity, stagnation enthalpy, entropy

— extrapolate 1 (3-D Euler)

bc tunnel outflow: tunnel exit (subsonic normal velocity)

— specify static pressure

— extrapolate 4 (3-D Euler)

bc degenerate line: face degenerated to a line;

bc degenerate point: face degenerated to a point;

bc symmetry Plane: symmetry plane; face should be coplanar

— density, pressure: ∂()/∂n = 0

— tangential velocity: ∂(~q × n̂)/∂n = 0

— normal velocity: ~q · n̂ = 0

bc symmetry polar: polar-coordinate singularity line; special case of bc degenerate line
where degenerate face is a straight line and flowfield has polar symmetry; ŝ is singularity line
tangential unit vector

— normal velocity: ~q × ŝ = 0
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— all others: ∂()/∂n = 0, n normal to ŝ

bc axissymmetric wedge: axisymmetric wedge; special case of bc degenerate line where
degenerate face is a straight line

5.2.2.1.9 bc type compound

bc type compound is an enumeration type that identifies the compound boundary-condition
at a boundary location.

EXPRESS specification:

*)
TYPE bc_type_compound = ENUMERATION OF

(bc_inflow,
bc_outflow,
bc_farfield);

END_TYPE;
(*

Enumerated item definitions:

bc inflow: inflow, arbitrary normal Mach
test on normal Mach, then perform one of: bc inflow subsonic, bc inflow supersonic;

bc outflow: outflow, arbitrary normal Mach
test on normal Mach, then perform one of: bc outflow subsonic, bc outflow supersonic;

bc farfield: farfield inflow/outflow, arbitrary normal Mach
test on normal velocity and normal Mach, then perform one of: bc inflow subsonic, bc -
inflow supersonic, bc outflow subsonic, bc outflow supersonic.

5.2.2.1.10 governing equations type

governing equations type is an enumeration of the classes of flow equations.

EXPRESS specification:

*)
TYPE governing_equations_type = ENUMERATION OF

(unspecified,
full_potential,
Euler,
NS_laminar,
NS_turbulent,
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NS_laminar_incompressible,
NS_turbulent_incompressible);

END_TYPE;
(*

Enumerated item definitions:

unspecified: is unspecified;

full potential: is full potential flow;

Euler: is Euler flow;

NS laminar: is Navier-Stokes laminar flow;

NS turbulent: is Navier-Stokes turbulent flow;

NS laminar incompressible: is Navier-Stokes laminar incrompressible flow;

NS turbulent incompressible: is Navier-Stokes turbulent incrompressible flow;

5.2.2.1.11 gas model type

gas model type is an enumeration of the state models relating pressure, temperature and
density.

EXPRESS specification:

*)
TYPE gas_model_type = ENUMERATION OF

(unspecified,
ideal,
Van_der_Waals);

END_TYPE;
(*

Enumerated item definitions:

unspecified: is unspecified.

ideal: the state model is the perfect gas law. The pressure, temperature and density are related
by,

p = ρRT,

where R is the ideal gas constant. Related quantities are the specific heat at constant pressure
(cp), specific heat at constant volume (cv) and specific heat ratio (γ = cp/cv). The gas constant
and specific heats are related by R = cp − cv.
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The standard data name identifiers associated with the perfect gas law are: ideal gas -
constant, specific heat ratio, specific heat volume and specific heat pressure. These
are described in clause G.3.3.12.

Van der Waals: the state model is Van der Waals’ equation.

5.2.2.1.12 viscosity model type

viscosity model type is an enumeration of the relationships between molecular viscosity and
temperature.

EXPRESS specification:

*)
TYPE viscosity_model_type = ENUMERATION OF

(unspecified,
constant_viscosity,
power_law,
Sutherland_law);

END_TYPE;
(*

Enumerated item definitions:

unspecified: is unspecified;

constant viscosity: the molecular viscosity is constant throughout the field and is equal to
some reference value (µ = µref)

power law: the molecular viscosity follows a power-law relation,

µ = µref

(
T

Tref

)n

.

The standard data name identifiers associated with this model are: power law exponent,
temperature reference and viscosity molecular reference. These are described in clause G.3.3.12.

Sutherland law: Sutherland’s Law for molecular viscosity,

µ = µref

(
T

Tref

)3/2
Tref + Ts

T + Ts
,

where Ts is the Sutherland Law constant, and µref and Tref are the reference viscosity and
temperature, respectively.

The standard data name identifiers associated with this model are: Sutherland law con-
stant, temperature reference and viscosity molecular reference. These are described in
clause G.3.3.12.
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NOTE 1

For air [4], the power-law exponent is n = 0.666, Sutherlands Law constant (Ts) is 110.6 K, the reference
temperature (Tref) is 273.15 K, and the reference viscosity (µref) is 1.716× 10−5 kg/(m s).

5.2.2.1.13 thermal conductivity model type

thermal conductivity model type is an enumeration of the relationships between the thermal-
conductivity coefficient and temperature.

EXPRESS specification:

*)
TYPE thermal_conductivity_model_type = ENUMERATION OF

(unspecified,
constant_Prandtl,
power_law,
Sutherland_law);

END_TYPE;
(*

Enumerated item definitions:

unspecified: is unspecified;

constant Prandtl: the Prandtl number (Pr = µcp/k) is constant and equal to some reference
value.

The standard data name identifier associated with this model is constant Prandtl, and is
described in clause G.3.3.12.

power law: the thermal conductivity is related to temperature via a power-law.

k = kref

(
T

Tref

)n

.

The standard data name identifiers associated with this model are: power law exponent,
temperature reference and thermal conductivity reference. These are described in clause G.3.3.12.

Sutherland law: Sutherland’s Law for thermal conductivity.

k = kref

(
T

Tref

)3/2
Tref + Ts

T + Ts
,

where Ts is the Sutherland Law constant, and kref and Tref are the reference thermal conduc-
tivity and temperature, respectively.
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The standard data name identifiers associated with this model are: Sutherland law con-
stant, temperature reference and thermal conductivity molecular reference. These
are described in clause G.3.3.12.

NOTE 1

For air [4], the Prandtl number is Pr = 0.72, the power-law exponent is n = 0.81, Sutherlands Law con-
stant (Ts) is 194.4 K, the reference temperature (Tref) is 273.15 K, and the reference thermal conductivity
(kref) is 2.414× 10−2 kg m/(s3K).

5.2.2.1.14 turbulence closure type

turbulence closure type is an enumeration of the kinds of turbulence closure for the Reynolds
stress terms of the Navier-Stokes equations.

EXPRESS specification:

*)
TYPE turbulence_closure_type = ENUMERATION OF

(unspecified,
eddy_viscosity,
Reynolds_stress,
Reynolds_stress_algebraic);

END_TYPE;
(*

Enumerated item definitions:

unspecified: is unspecified;

eddy viscosity: Boussinesq eddy-velocity closure. The Reynolds stresses are approximated as
the product of an eddy viscosity (νt) and the mean strain tensor. Using indicial notation, the
relation is,

−ui′uj ′ = νt

(
∂ui

∂xj
+
∂uj

∂xi

)
where −ui′uj ′ are the Reynolds stresses.

Reynolds stress: no approximation of the Reynolds stresses.

Reynolds stress algebraic: an algebraic approximation for the Reynolds stresses based on
some intermediate transport quantities.

The associated standard data name name identifiers are: eddy viscosity and Prandtl -
turbulent. These are described in clause G.3.3.12.
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5.2.2.1.15 turbulence model type

turbulence model type is an enumeration of the equation sets for modeling the turbulence
quantities.

EXPRESS specification:

*)
TYPE turbulence_model_type = ENUMERATION OF

(unspecified,
algebraic_Baldwin_Lomax,
algebraic_Cebeci_Smith,
half_equation_Johnson_King,
one_equation_Baldwin_Barth,
one_equation_Spalart_Allmaras,
two_equation_Jones_Launder,
two_equation_Menter_SST,
two_equation_Wilcox);

END_TYPE;
(*

Enumerated item definitions:

unspecified: is unspecified;

algebraic Baldwin Lomax: is Baldwin-Lomax;

algebraic Cebeci Smith: is Cebeci-Smith;

half equation Johnson King: is Johnson-King;

one equation Baldwin Barth: is Baldwin-Barth;

one equation Spalart Allmaras: is Spalart-Allmaras;

two equation Jones Launder: is Jones-Launder;

two equation Menter SST: is Menter;

two equation Wilcox: is Wilcox.

The associated standard data name name identifiers for the Spalart-Allmaras turbulence
model (version Ia) are: turbulent SA cb1, turbulent SA cb2, turbulent SA sigma, tur-
bulent SA kappa, turbulent SA cw1, turbulent SA cw2, turbulent SA cw3, turbu-
lent SA cv1, turbulent SA ct1, turbulent SA ct2, turbulent SA ct3, and turbulent -
SA ct4. These are described in clause G.3.3.12.
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5.2.2.2 Fluid dynamics data imported type definitions

5.2.2.2.1 TYPE 1

5.2.2.3 Fluid dynamics data entity definitions

5.2.2.3.1 cfd base

The highest level structure in a CFD database is cfd base. It contains the dimensionality of the
grid and a list of zones making up the domain. Globally applicable information, including a refer-
ence state, a set of flow equations, dimensional units, and convergence history are also attached.
In addition, structures for describing or annotating the database are also accomodated.

EXPRESS specification:

*)
ENTITY cfd_base;
description : OPTIONAL texts; -- ARM LIST OF STRING;
cell_dimension : positive; -- ARM INTEGER;
physical_dimension : positive; -- ARM INTEGER;
zones : LIST OF zone;
refstate : OPTIONAL reference_state;
class : OPTIONAL data_class;
units : OPTIONAL dimensional_units;
equations : OPTIONAL flow_equation_set;
history : OPTIONAL convergence_history;
data : LIST OF integral_data;
families : LIST OF family;

END_ENTITY;
(*

Attribute definitions:

description: Annotations;

cell dimension: The dimension of cells in the mesh.

physical dimension: The number of coordinates required to define a node position.

zones: Data specific to each zone or block in a multiblock case. The size of the list defines the
number of zones or blocks in the domain.

refstate: Reference data applicable to the entire database; quantities such as Reynolds number
and freestream Mach number are given here (for external flow problems).

class: Global default data class for the database. If the CFD database contains dimensional
data (e.g., velocity with units of m/s), units may be used to describe the system of units
employed.
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units: Specification of the global default units;

equations: Description of the governing flow equations associated with the entire database.
This structure contains information on the general class of governing equations (e.g., Euler or
Navier-Stokes), equation sets required for closure, including turbulence modelling and equations
of state, and constants associated with the equations.

history: Global relevant convergence history. The convergence information includes total con-
figuration forces, global parameters (e.g., freestream angle-of-attack), and global residual and
solution-change norms taken over all the zones.

data: Miscellaneous data. Candidates for inclusion are global forces and moments.

families: Global family information.

class, units, refstate and equations have special function in the CFD hierarchy. They are
globally applicable throughout the database, but their values may be superseded by local entities
(e.g., within a given zone).

5.2.2.3.2 zone

zone contains all information pertinent to an individual multiblock zone. This information
includes the number of cells and vertices making up the grid, the physical coordinates of the
grid vertices, the flow solution, multiblock interface connectivity, boundary-conditions, and zonal
convergence-history data. In addition this structure contains a reference state, a set of flow
equations and dimensional units that are all unique to the zone.

EXPRESS specification:

*)
ENTITY zone;
description : OPTIONAL texts; -- ARM LIST OF STRING;
grid : mesh_topology;
coordinates : OPTIONAL grid_coordinates;
family_name : OPTIONAL family;
solution : LIST OF flow_solution;
field_data : LIST OF discrete_data;
global_data : LIST OF integral_data;
grid_connectivity : OPTIONAL multiblock; -- ARM zone_grid_connectivity;
conditions : OPTIONAL zone_bc;
rstate : OPTIONAL reference_state;
dclass : OPTIONAL data_class;
dimunits : OPTIONAL dimensional_units;
floweqset : OPTIONAL flow_equation_set;
history : OPTIONAL convergence_history;

DERIVE
cell_dimension : positive := base.cell_dimension;
physical_dimension : positive := base.physical_dimension;
dimension : positive := grid.dimension;
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vertex_size : ARRAY [1:dimension] OF positive := grid.vertex_size;
cell_size : ARRAY [1:dimension] OF positive := grid.cell_size;
class : data_class := NVL(dclass, base.class);
units : dimensional_units := NVL(dimunits, base.units);
equations : flow_equation_set:= NVL(floweqset, base.equations);
refstate : reference_state := NVL(rstate, base.refstate);

INVERSE
base : cfd_base FOR zones;

END_ENTITY;

SUBTYPE_CONSTRAINT sc1_zone FOR zone;
ABSTRACT SUPERTYPE;
ONEOF(structured_zone,

unstructured_zone);
END_SUBTYPE_CONSTRAINT;
(*

Attribute definitions:

description: is annotation;

grid: the grid;

coordinates: are the physical coordinates of the grid vertices. This structure defines ‘the grid’;
it may optionally contain physical coordinates of rind or ghost points.

family name: Identifies to which family the zone belongs to. Family names may be used to
define material properties.

solution: is the flow-solution quantities. Each instance of flow solution shall only contain
data at a single grid location (vertices, cell-centers, etc.); therefore, multiple flow solution
structures are provided to store flow-solution data at different grid locations. These structures
may optionally contain solution data defined at rind points.

field data: is miscellaneous field data. Candidate information includes residuals, fluxes and
other discrete data that is considered auxiliary to the flow solution.

global data: is miscellaneous zone-specific global data, other than reference-state data and
convergence history information.

grid connectivity: is the multiblock interface-connectivity information.

conditions: is the boundary-condition information.

rstate: non-default reference-state data.

dclass: non-default class of data.

dimunits: non-default system of units.

floweqset: if a set of flow equations are specific to an individual zone, these are described
here.
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EXAMPLE 1 For example, if a single zone in the domain is inviscid, whereas all others are turbulent,
then this zone-specific equation set could be used to describe the special zone.

history: is the convergence history of the zone; this includes residual and solution-change
norms.

cell dimension: The dimension of a cell in the mesh.

physical dimension: The number of coordinates required to define a node position.

dimension: The number of indices required to identify uniquely a vertex or a cell in the grid.
It is the dimensionality of the computational grid. For structured-grid calculations, dimension
is usually the same as the spatial problem being solved (e.g., dimension=3 for a 3-D problem).
For lower-dimensional flowfields, such as quasi 3-D flow, dimension may not be the same as
the dimensionality of the position vector or the velocity vector. For unstructured grids, usually
dimension=1 since all the grid points and flow solution variables are stored in 1-D arrays.
However, there are instances, such as prismatic boundary-layer grids, where dimension may
be 2.

vertex size: is the number of vertices in each index direction. it is the number of vertices
defining ‘the grid’ or the domain (i.e., without rind points).

cell size: is the number of cells in each index direction. It is the number of cells on the interior
of the domain.

class: is the zonal default for the class of data contained in the zone and its substructures.

units: is the description of the system of dimensional units in the zone.

refstate: is reference-state data specific to the individual zone.

equations: is the flow equation set.

base: is the database.

5.2.2.3.3 structured zone

structured zone contains the information pertinent to an individual structured multiblock
zone.

EXPRESS specification:

*)
ENTITY structured_zone
SUBTYPE OF (zone);
SELF\zone.grid : regular_mesh_topology;

END_ENTITY;
(*
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Attribute definitions:

grid: the structured grid.

5.2.2.3.4 unstructured zone

unstructured zone contains the information pertinent to an individual unstructured zone.

EXPRESS specification:

*)
ENTITY unstructured_zone
SUBTYPE OF (zone);
SELF\zone.grid : unstructured_mesh_topology;

END_ENTITY;
(*

Attribute definitions:

grid: the unstructured grid.

5.2.2.3.5 grid coordinates

The physical coordinates of the grid vertices in a zone are described by the grid coordinates
structure. The structure contains a list for the data arrays of the individual components of the
position vector. It also provides a mechanism for identifying rind-point data included within
the position-vector arrays.

EXPRESS specification:

*)
ENTITY grid_coordinates
SUBTYPE OF (mesh_topology_data);
rind : OPTIONAL rind;
SELF\mesh_topology_data.data : ARRAY [1:physical_dimension] OF data_array;
dclass : OPTIONAL data_class;
dimunits : OPTIONAL dimensional_units;

DERIVE
dimension : positive := zone.dimension;
class : data_class := NVL(dclass, zone.class);
units : dimensional_units := NVL(dimunits, zone.units);
vertex_size : ARRAY [1:dimension] OF INTEGER := zone.vertex_size;
data_size : ARRAY [1:dimension] OF positive := grid_data_size(SELF);
grid : mesh_topology := zone.grid;

INVERSE
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zone : zone FOR coordinates;
WHERE
wr1 : (NOT EXISTS(rind)) XOR (rind.dimension = dimension);
wr2 : NOT ((schdot+’UNSTRUCTURED_ZONE’ IN TYPEOF(zone)) AND EXISTS(rind));
wr3 : SELF\mesh_topology_data.mesh :=: grid;
wr3 : SIZEOF(QUERY(v <* data) |

consistent_data_array(v,
dimension,
data_size,
coordinate_data_name,
class, units, ?, ?))

= SIZEOF(data);
END_ENTITY;
(*

Attribute definitions:

rind: is optional. If not given then this is equivalent to a rind structure whose planes array
contains all zeros.

data: is the grid-coordinate data; each data array shall contain a single component of the
position vector (e.g., three structures are required for 3-D data, one for each coordinate value).

dclass: non-default data class;

dimunits: non-default system of units;

dimension: The number of indices required to reference a node.

class: is the default class for data contained in data array.

units: describes the system of units employed.

vertex size: is the number of vertices, excluding rind points, in each index direction;

grid: is the grid for which the coordinates are specified;

zone: is the calling zone.

Formal propositions:

wr1: If rind has a value, then the value of rind.dimension shall be equal to the value of
dimension.

wr2: Grid coordinates for an unstructured zone shall not have a value for rind, as it is mean-
ingless in this case.

wr3: The attribute values of data shall be consistent; in particular, the identifier shall be a
coordinate data name.
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5.2.2.3.6 flow solution

The flow solution within a given zone is described by the flow solution structure. This structure
contains a list of the data arrays of the individual flow solution variables, as well as identifying
the grid location of the solution. It also provides a mechanism for identifying rind-point data
included within the data arrays.

EXPRESS specification:

*)
ENTITY flow_solution
SUBTYPE OF(mesh_topology_data);
rind : OPTIONAL rind;
data : LIST OF data_array;
gridloc : OPTIONAL grid_location;
dclass : OPTIONAL data_class;
dimunits : OPTIONAL dimensional_units;

DERIVE
dimension : positive := zone.dimension;
class : data_class := NVL(dclass, zone.class);
units : dimensional_units := NVL(dimunits, zone.units);
vertex_size : ARRAY [1:dimension] OF INTEGER := zone.vertex_size;
cell_size : ARRAY [1:dimension] OF INTEGER := zone.cell_size;
location : grid_location := NVL(gridloc, vertex);
grid : mesh_topology := zone.grid;
field_size : ARRAY [1:dimension] OF positive :=

field_data_size(dimension, vertex_size, cell_size,
location, rind);

INVERSE
zone : zone FOR solution;

WHERE
wr1 : (NOT EXISTS(rind)) XOR (rind.dimension = dimension);
wr2 : NOT ((schdot+’UNSTRUCTURED_ZONE’ IN TYPEOF(zone)) AND EXISTS(rind));
wr3 : SELF\mesh_topology_data.mesh :=: grid;
wr3 : SIZEOF(QUERY(v <* data) |

consistent_data_array(v,
dimension,
field_size,
?,
class, units, ?, ?))

= SIZEOF(data);
wr4 : (location = vertex) XOR (location = cell_center);

END_ENTITY;
(*

Attribute definitions:

rind: is the number of rind planes included in the data.
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data: is the data. Each structure in the list contains a single component of the solution vector.

gridloc: is the non-default kind of grid location;

dclass: non-default class of data;

dimunits: non-default system of units;

dimension: The number of indices required to reference a node.

class: is the default class for data in DataArrays.

units: is the description of the system of units.

vertex size: is the numbers of core vertices in each index direction.

cell size: is the numbers of core cells in each index direction.

location: specifies the location of the solution data with respect to the grid. All data within a
given instance of flow solution resides at the same kind of grid location.

grid: is the grid fow which the flow solution is specified;

field size: is the size of the flow solution data arrays;

zone: is the zone.

Formal propositions:

wr1: If rind has a value, then the value of rind.dimension shall be equal to the value of
dimension.

wr2: A flow solution of an unstructured zone shall not have a value for rind, as it is meaningless
in this case.

wr3: DataArrays shall be consistent.

wr4: The grid location shall be either vertex or cell center.

5.2.2.3.7 zone bc

All boundary-condition information pertaining to a given zone is contained in the zone bc
structure.

EXPRESS specification:

*)
ENTITY zone_bc;
description : OPTIONAL texts;
conditions : LIST OF bc;
rstate : OPTIONAL reference_state;
dclass : OPTIONAL data_class;
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dimunits : OPTIONAL dimensional_units;
DERIVE
dimension : positive := zone.dimension;
physical_dimension : positive := zone.physical_dimension;
class : data_class := NVL(dclass, zone.class);
units : dimensional_units := NVL(dimunits, zone.units);
refstate : reference_state := NVL(rstate, zone.refstate);
grid : mesh_topology := zone.grid;

INVERSE
zone : zone FOR conditions;

END_ENTITY;
(*

Attribute definitions:

description: is annotations;

conditions: is the boundary-conditions for a zone, on a patch by patch basis. Boundary-
condition information for a single patch is contained in the bc structure. If a zone contains N
boundary-condition patches, then N seperate instances of bc shall be provided in the zone bc
entity for the zone.

rstate: non-default reference data;

dclass: non-default data class;

dimunits: non-default dimensional units;

dimension: The number of indices required to reference a node.

physical dimension: The number of coordinates required to define a node position.

refstate: is reference data applicable to all the boundary-condition of the zone. Reference state
data is useful for situations where boundary-condition data is not provided, and flow solvers are
free to enforce any appropriate boundary-condition equations.

EXAMPLE 1 An engine nozzle exit boundary-condition usually imposes a stagnation pressure (or some
other stagnation quantity) different from freestream. The nozzle-exit stagnation quantities could be
specified by refstate at this level or below in lieu of providing explicit Dirichlet or Neumman data.

class: is the zonal default for the class of data contained in the zone’s boundary-conditions.

units: is the system of dimensional units.

grid: is the grid for which the boundary-condition information is specified;

zone: is the zone.

5.2.2.3.8 bc

bc contains boundary-condition information for a single BC surface patch of a zone. A BC
patch is the subrange of the face of a zone where a given boundary-condition is applied.
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The structure contains a boundary-condition type, as well as one or more sets of boundary-
condition data that are used to define the boundary-condition equations to be enforced on the
BC patch. For most boundary-conditions, a single data set is all that is needed. The structure
also contains information describing the normal vector to the BC surface patch.

EXPRESS specification:

*)
ENTITY bc;
description : OPTIONAL texts;
the_type : bc_type;
point_range : OPTIONAL index_range;
point_list : OPTIONAL index_list;
elements : OPTIONAL LIST OF elements;
element_range : OPTIONAL index_range;
element_list : OPTIONAL index_list;
inward_normal_index : OPTIONAL ARRAY [1:dimension] OF INTEGER;
inward_normal_list : OPTIONAL index_list;
data_sets : LIST OF bc_data_set;
family_name : OPTIONAL family;
rstate : OPTIONAL reference_state;
dclass : OPTIONAL data_class;
dimunits : OPTIONAL dimensional_units;

-- vertex_list_length : positive;
face_center_list_length : OPTIONAL positive;

DERIVE
dimension : positive := zonebc.dimension;
physical_dimension : positive := zonebc.physical_dimension;
refstate : reference_state := NVL(refstate, zonebc.refstate);
class : data_class := NVL(dclass, zonebc.class);
units : dimensional_units := NVL(dimunits, zonebc.units);

INVERSE
zonebc : zone_bc FOR conditions;

WHERE
wr1 : EXISTS(point_range) XOR EXISTS(point_list) XOR

EXISTS(elements) XOR EXISTS(element_range) XOR
EXISTS(element_list);

wr2 : (NOT EXISTS(point_range)) XOR (point_range.dimension = dimension);
wr3 : (NOT EXISTS(point_list)) XOR (point_list.dimension = dimension);

-- (IndexArrayOK(PointList, Int, dimension, VertexListLength));
wr4 : (NOT EXISTS(InwardNormalList)) XOR

(IndexArrayOK(InwardNormalList, Float, physical_dimension, VertexListLength));
wr5 : (NOT EXISTS(data_sets)) XOR

(EXISTS(data_sets) AND EXISTS(face_center_list_length));
END_ENTITY;
(*
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Table 11 – InwardNormalIndex values

face InwardNormalIndex face InwardNormalIndex
i-min [+1, 0, 0] i-max [−1, 0, 0]
j-min [0,+1, 0] j-max [0,−1, 0]
k-min [0, 0,+1] k-max [0, 0,−1]

Attribute definitions:

description: is annotations;

the type: is the type of the boundary-condition;

point range: is a face subrange (i.e., points in a single computational plane); by convention
the indices refer to vertices;

point list: is a face subrange (i.e., points in a single computational plane); by convention the
indices refer to vertices;

elements: is the elements;

element range: is an element subrange;

element list: is the element indices;

inward normal index: shall have only one non-zero element, whose sign indicates the computational-
coordinate direction of the BC patch normal; this normal points into the interior of the zone.

Some boundary-conditions require a normal direction to be specified in order to be properly
imposed. A computational-coordinate normal can be derived from point range or point -
list by examining redundant index components. Alternatively, this information can be provided
directly by inward normal index. For exterior faces of a zone in 3-D, inward normal index
takes one of the values given in Table 11.

inward normal list: is a list of vectors normal to the BC patch pointing into the interior of
the zone; the vectors are not required to be unit vectors. By convention the vectors are located
at the vertices of the BC patch.

The physical-space normal vectors of the BC patch may be described by inward normal list;
these are located at vertices, consistent with point range and point list. inward normal -
list is specified as an optional attribute because it is not always needed to enforce boundary-
conditions, and the physical-space normals of a BC patch can usually be constructed from
the grid. However, there are some situations, such as grid-coordinate singularity lines, where
inward normal list becomes a required attribute because the normals cannot be generated
from other information.

data sets: is a list of boundary-condition data sets. In general, the proper bc data set in-
stance(s) to impose on the BC patch is determined by the value of the type.

For a few boundary-conditions, such as a symmetry plane or polar singularity, the value of
the type completely describes the equations to impose, and no instances of bc data set are
needed. For ‘simple’ boundary-conditions, where a single set of Dirichlet and/or Neumann data
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is applied a single bc data set will likely be used (althought this is not a requirement). For
‘compound’ boundary-conditions, where the equations to impose are dependent on local flow
conditions, several instances of bc data set will likely be used.

refstate: non-default reference data;

dclass: non-default data class;

dimunits: non-default dimensional units;

refstate: is reference data applicable to the conditions of the BC patch.

class: is the class of data;

units: is the system of units;

dimension: The number of indices required to reference a node.

physical dimension: The number of coordinates required to define a node position.

vertex list length: is the number of vertices making up the BC patch. If point range is
specified, then the value may be determined from the number of grid points (inclusive) between
the beginning and ending indices of point range. If point list is specified then the value is a
user input. vertex list length is also the number of elements in the list inward normal list.

face center list length: is the number of cell faces making up the BC patch. If point range
has a value, then the value of face center list length can be easily determined. If the BC
patch is not logically rectangular (i.e., if point list is specified), then the value of face center -
list length cannot be determined and has to be a user input.

zonebc: is the calling zone bc.

Formal propositions:

wr1: One and only one of the following attributes shall have a value: point range, point list,
elements, element range, element list. but not both.

wr2: If point range has a value it shall have the given value for dimension.

wr3: If point list has a value, then it shall have the given values of Int, dimension and
VertexListLength.

wr4: If inward normal list has a value, then it shall have the given values of Float, dimen-
sion and VertexListLength.

wr5: If BCDataSets has a value then face center list length shall also have a value.

Informal propositions:

ip1: InwardNormalIndex shall have a single nonzero entry;

ip2: If point range and inward normal list are specified, then a an ordering convention is
needed for indices on the BC patch. An ordering convention is also needed if point range is
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specified and local data is present in the bc data set substructures. FORTRAN multidimen-
sional array ordering shall be used.

5.2.2.3.9 bc data set

bc data set contains Dirichlet and Neumann data for a single set of boundary-condition equa-
tions. Its intended use is for simple boundary-condition types, where the equations imposed do
not depend on local flow conditions.

Boundary-condition data is seperated by equation type into Dirichlet and Neumann condi-
tions. Dirichlet boundary-conditions impose the value of the given variables, whereas Neumann
boundary-conditions impose the normal derivative of the given variables.

The bc structure (clause 5.2.2.3.8) allows for an arbitrary list of boundary-condition data sets,
described by the bc data set structure. For simple boundary-conditions, a single data set
must be chosen from a list that may contain more than one element. Likewise, for a compound
boundary-condition, a limited number of data sets must be chosen and applied appropriately.
The mechanism for proper choice of data sets is controlled by the the type attribute of the bc
structure, the the type attribute of the bc data set structure, and the boundary-condition
type association table (Table 12).

bc is used for both simple and compound boundary-conditions; hence, the attribute bc.the -
type is of type bc type. Conversely, the structure bc data set is intended to enforce a single
set of boundary-condition equations independent of local flow conditions (i.e., it is appropriate
only for simple boundary-conditions). That is why the attribute bc data set.simple type is
of type bc type simple and not bc type. The appropriate choice of data sets is determined
by matching the value of bc.the type with the value of bc data set.simple type as specified
in Table 12.

Although the model has a strict division between the two categories of boundary-condition
types, in practice some overlap may exist. For example, some of the more general boundary-
condition types, such as bc wall, may include a situation of inflow/outflow (for instance if the
wall is porous). These complications require further guidelines on appropriate definition and
use of boundary-condition types. The real distinctions between bc type simple and bc type -
compound are as follows:

— bc type simple identifiers always match themselves; bc type compound never match
themselves.

— bc type simple identifiers always produce a single match; bc type compound produce
multiple matches.

— The usage rule for bc type simple identifiers is always trivial — apply the single matching
data set regardless of local flow conditions.

Therefore, any boundary-condition that involves application of different data sets depending on
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Table 12 – Associated boundary-condition types and usage rules

bc type Identifier Associated bc type simple identifiers and usage
rules

bc inflow bc inflow supersonic
bc inflow subsonic
usage rule:
if supersonic normal Mach, choose bc inflow super-
sonic,
else choose bc inflow subsonic.

bc outflow bc outflow supersonic
bc outflow subsonic
usage rule:
if supersonic normal Mach, choose bc outflow super-
sonic,
else choose bc outflow subsonic.

bc farfield bc inflow supersonic
bc inflow subsonic
bc outflow supersonic
bc outflow subsonic
usage rule:
if inflow and supersonic normal Mach, choose bc inflow -
supersonic,
else if inflow, choose bc inflow subsonic,
else if outflow and supersonic normal Mach, choose bc -
outflow supersonic,
else, choose bc outflow subsonic.

bc inflow supersonic bc inflow supersonic
bc Dirichlet
usage rule:
choose either; bc inflow supersonic takes precedence.

bc outflow supersonic bc outflow supersonic
bc Extrapolate
usage rule:
choose either; bc outflow supersonic takes precedence.

all others self-matching
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local flow conditions should be classified as bc type compound.

NOTE 1 If a type that is classified bc type simple is desired to be used as a compound (bc wall
for a porous wall is an example), then it should somehow be reclassified. One option is to define a new
bc type compound identifier and provide associated bc type simple types and a usage rule. Another
option may be to allow some identifiers to be both bc type simple and bc type compound and let
their appropriate use be based on context. This is still evolving.

For a given simple boundary-condition (i.e., one that is not dependent on flow conditions), the
database provides a set of boundary-condition equations to be enforced through the definitions
of bc data set and bc data. Apart from the boundary-condition type, the precise equations
to be enforced are described by boundary-condition solution data. These specified solution data
are arranged by ‘equation type’:

Dirichlet: Q = (Q)specified
Neumann: ∂Q/∂n = (∂Q/∂n)specified

The Dirichlet data and Neumann data attributes (of type bc data) list both the solution
variables involved in the variables (through the data-name conventions of clause G.3.3.12) and
the specified solution data.

Two issues need to be addressed for specifying Dirichlet or Neumann boundary-condition data.
The first is whether the data is global or local.

NOTE 2

global BC data: data applied globally to the BC patch; for example, specifying a uniform total
pressure at an inflow boundary.

local BC data: data applied at each grid point of the BC patch; an example of this is varying
total pressure specified at each vertex of the BC patch.

The second issue is describing the actual solution quantities that are to be specified. Both of
these issues are addressed by use of the data array structure.

For some types of boundary-conditions, many different combinations of solution quantities could
be specified. For example, bc inflow subsonic requires four solution quantities to be specified
in 3-D, but what those four quantities are varies with applications (e.g., internal versus external
flows) and codes. The actual data being specified for any bc type is given by the list of data -
array instances included in the Dirichlet data and Neumann data attributes (actually by
the identifier attached to each instance of data array). This reduces the potential problem of
having to specify many versions of a given bc type (e.g., bc inflow subsonic1, bc inflow -
subsonic2 etc.), where each has a precisely defined set of Dirichlet data. Instead, only the
number of Dirichlet or Neumann quantities must be provided for each bc type.

The global versus local issue can easily be handled by storing a scalar for the global BC data
case, and storing an array for the local BC data case.
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By convention, if the Dirichlet data and Neumann data are not present in an instance of
bc data set, then application codes (e.g., flow solvers) are free to enforce appropriate boundary-
conditions for the given type of bc type simple. Furthermore, if insufficient data is present
(e.g., only one Dirichlet variable is present for a subsonic inflow condition), then application
codes are free to fill out the boundary-condition data as appropriate for the bc type simple
identifier.

To facilitate implementation of boundary-conditions into existing flow solvers, if no boundary-
condition data is specified, then flow solvers are free to enforce any appropriate boundary-
condition equations. This includes situations where instances of bc data set, bc data or
data array are absent within the boundary-condition hierarchy. In this case the reference -
state specifies the reference-state conditions from which the flow solver should extract the
boundary-condition data. Within the boundary-condition hierarchy, reference state instances
may be present at any of the zone bc, bc or bc data set levels with the lowest taking prece-
dence.

EXPRESS specification:

*)
ENTITY bc_data_set;
description : OPTIONAL texts;
simple_type : bc_type_simple;
gridloc : OPTIONAL grid_location;
Dirichlet_data : OPTIONAL bc_data;
Neumann_data : OPTIONAL bc_data;
rstate : OPTIONAL reference_state;
dclass : OPTIONAL data_class;
dimunits : OPTIONAL dimensional_units;

DERIVE
location : grid_location := NVL(gridloc, vertex);
refstate : reference_state := NVL(rstate, bc.refstate);
class : data_class := NVL(dclass, bc.class);
units : dimensional_units := NVL(dimunits, bc.units);
vertex_list_length : positive := bc.vertex_list_length;
face_center_list_length : positive := bc.face_center_list_length;
data_array_length : INTEGER := BCDataSet_DataArrayLength(SELF);

INVERSE
bc : bc FOR data_sets;

END_ENTITY;
(*

Attribute definitions:

description: is annotations;

simple type: is the boundary-condition type, which gives general information on the boundary-
condition equations to be enforced.
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gridloc: is non-default location information;

location: is the location of local data arrays (if any) provided in Dirichlet data and Neu-
mann data. Local boundary-condition data may be defined either at vertices or boundary face
centers.

Dirichlet data: is boundary-condition data for Dirichlet conditions which may be constant
over the BC patch or defined locally at each point of the patch.

Neumann data: is boundary-condition data for Neumann conditions which may be constant
over the BC patch or defined locally at each point of the patch.

rstate: non-default reference data;

dclass: non-default data class;

dimunits: non-default dimensional units;

refstate: is reference quantities applicable to the set of boundary-condition data.

class: is the class of data contained in the boundary-condition data.

units: is the system of units employed.

vertex list length: is the number of vertices in the BC patch.

face center list length: is the number of cell faces in the BC patch.

data array length: is the length of the data arrays.

bc: is the calling bc.

5.2.2.3.10 bc data

bc data contains a list of variables and associated data for boundary-condition specification.
Each variable may be given as global data (i.e., a scalar) or local data defined at each grid point
of the BC patch. By convention all data specified in a given instance of bc data is to be used
in the same type of boundary-condition equation.

EXAMPLE 1 The Dirichlet and Neumann conditions in bc data set use seperate bc data structures.

This structure allows a given instance of bc data to have a mixture of global and local data.

EXAMPLE 2 If the Dirichlet condition consists of a uniform stagnation pressure but with with a non-
uniform velocity profile, then the stagnation pressure can be described by a scalar in the data global
list and the velocity by an array in the data local list.

EXPRESS specification:

*)
ENTITY bc_data;
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description : OPTIONAL texts;
data_global : LIST OF data_array;
data_local : LIST OF data_array;
dclass : OPTIONAL data_class;
dimunits : OPTIONAL dimensional_units;

DERIVE
class : data_class := BCData_class(SELF);
units : dimensional_units := BCData_DimUnits(SELF);
data_array_length : INTEGER := NVL(DataSetD[1].DataArrayLength, 0) +

NVL(DataSetN[1].DataArrayLength, 0);
INVERSE
Dirichlet : BAG [0:1] OF bc_data_set FOR Dirichlet_data;
Neumann : BAG [0:1] OF bc_data_set FOR Neumann_data;

WHERE
wr1 : SIZEOF(DataSetD+DataSetN) = 1;
wr4 : SIZEOF(QUERY(v <* data_global |

consistent_data_array(v, 1, [1],
class, units, ?, ?))

= SIZEOF(data_global);
wr5 : SIZEOF(QUERY(v <* data_local |

consistent_data_array(v, 1, [1],
class, units, ?, ?))

= SIZEOF(data_local);
-- wr4 : DataArraysOK(DataGlobal, DataTypeG, 1, 1);
-- wr5 : DataArraysOK(DataLocal, DataTypeL, 1, DataArrayLength);
END_ENTITY;
(*

Attribute definitions:

description: is annotation;

data global: is global data;

data local: is local data;

dclass: non-default data class;

dimunits: non-default system of units;

class: is the class of data;

units: is the system of units for the data;

data array length: is the length data arrays;

Dirichlet: is the calling bc data set which uses this bc data for Dirichlet data;

Neumann: is the calling bc data set which uses this bc data for Neumann data;

c©ISO 2000 — All rights reserved 47



ISO/WD 10303-2fd:2000(E) Nxxxx

Formal propositions:

wr1: An instance of bc data shall be called in the role of either Dirichlet data or Neumann -
data.

5.2.2.3.11 family

EXPRESS specification:

*)
ENTITY family;
description : OPTIONAL texts;
conditions : LIST OF bc_type;
geometry : LIST OF externally_defined_item;

END_ENTITY;
(*

Attribute definitions:

description: is annotation;

conditions: the family’s boundary condition types;

geometry: the family’s geometric information;

5.2.2.3.12 flow equation set

flow equation set is a general description of governing flow equations. It includes the dimen-
sionality of the governing equations.

EXPRESS specification:

*)
ENTITY flow_equation_set;
description : OPTIONAL texts;
equation_dimension : positive;
equations : OPTIONAL governing_equations;
state : OPTIONAL gas_model;
viscosity : OPTIONAL viscosity_model;
thermal_conductivity : OPTIONAL thermal_conductivity_model;
closure : OPTIONAL turbulence_closure;
turbulence : OPTIONAL turbulence_model;
dclass : OPTIONAL data_class;
dimunits : OPTIONAL dimensional_units;

DERIVE
dimension : positive := NVL(base[1].dimension,0) +

NVL(zone[1].dimension,0);
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class : data_class :=
NVL(dclass, inherit_class_from_base_zone(base, zone));

units : dimensional_units :=
NVL(dimunits, inherit_units_from_base_zone(base, zone));

INVERSE
base : BAG [0:1] OF cfd_base FOR equations;
zone : BAG [0:1] OF zone FOR equations;

WHERE
wr1 : SIZEOF(base) + SIZEOF(zone) = 1;

END_ENTITY;
(*

Attribute definitions:

description: is annotation;

equation dimension: is the dimensionality of the governing equations; it is the number of
spatial variables describing the flow.

equations: describes the general class of equations.

state: describes the equation of state.

viscosity: describes the auxiliary relations for molecular viscosity.

thermal conductivity: describes the auxiliary relations for the thermal conductivity coeffi-
cient.

closure: describes the turbulent closure for Reynolds-averaged Navier-Stokes equations.

turbulence: describes the turbulence model for Reynolds-averaged Navier-Stokes equations.

dclass: non-default class of data;

dimunits: non-default system of units;

class: is the class of data contained in the flow equation set.

units: is the system of units.

dimension: The number of indices required to reference a node.

base: is the calling calling cfd base;

zone: is the calling calling zone;

Formal propositions:

wr1: A flow equation set shall be called by either a cfd base or by a zone.
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5.2.2.3.13 governing equations

governing equations describes the class of governing flow equations associated with the solu-
tion.

EXPRESS specification:

*)
ENTITY governing_equations;
description : OPTIONAL texts;
equation_type : governing_equations_type;
diffusion_model : OPTIONAL ARRAY [1:diff] OF BOOLEAN;

DERIVE
dimension : positive := equation_set.dimension;
diff : INTEGER := (dimension**2 + dimension)/2;

INVERSE
equation_set : flow_equation_set FOR equations;

END_ENTITY;
(*

Attribute definitions:

description: is annotations;

equation type: is the kind of equation;

diffusion model: describes the viscous diffusion terms modelled in the flow equations, and is
applicable only to Navier-Stokes equations. Typically, thin-layer approximations include only the
diffusion terms in one or two computational-coordinate directions. diffusion model encodes
the coordinate directions that include second-derivative and cross-derivative diffusion terms.
The first dimension elements are second-derivative terms and the remainder elements are cross-
derivative terms. A value of TRUE indicates the diffusion term is modelled, and FALSE indicates
that it is not modelled. In 3–D, the encoding of diffusion model is as follows:

element modelled terms
n = 1 diffusion terms in i (∂2/∂ξ2)
n = 2 diffusion terms in j (∂2/∂η2)
n = 3 diffusion terms in k (∂2/∂ζ2)
n = 4 cross-diffusion terms in i-j (∂2/∂ξ∂η and ∂2/∂η∂ξ)
n = 5 cross-diffusion terms in j-k (∂2/∂η∂ζ and ∂2/∂ζ∂η)
n = 6 cross-diffusion terms in k-i (∂2/∂ζ∂ξ and ∂2/∂ξ∂ζ)

where derivatives in the i, j and k computational-coordinates are ξ, η and ζ, respectively.

EXAMPLE 1 The full Navier-Stokes equations in 3–D are indicated by:
diffusion model = [TRUE,TRUE,TRUE,TRUE,TRUE,TRUE] while the thin-layer equations including only
diffusion in the j-direction are indicated by:
diffusion model = [FALSE,TRUE,FALSE,FALSE,FALSE,FALSE].

50 c©ISO 2000 — All rights reserved



Nxxxx ISO/WD 10303-2fd:2000(E)

dimension: The number of indices required to reference a node.

diff: is the number of elements in diffusion model. For 1-D this is one, for 2-D it is three,
and for 3-D it is six.

equation set: is the calling flow equation set.

5.2.2.3.14 fd model

EXPRESS specification:

*)
ENTITY fd_model;
description : OPTIONAL texts;
data : LIST OF data_array;
dclass : OPTIONAL data_class;
dimunits : OPTIONAL dimensional_units;

END_ENTITY;

SUBTYPE_CONSTRAINT sc1_fd_model FOR fd_model;
ABSTRACT SUPERTYPE;
ONEOF(gas_model,

thermal_conductivity_model,
turbulence_closure,
turbulence_model,
viscosity_model);

END_SUBTYPE_CONSTRAINT;
(*

Attribute definitions:

description: is annotations;

data: is the data;

dclass: is non-default class of data;

dimunits: is non-default dimensional units.

5.2.2.3.15 gas model

gas model describes the equation of state model used in the governing equations to relate
pressure, temperature and density.

EXPRESS specification:

*)
ENTITY gas_model
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SUBTYPE OF (fd_model);
model_type : gas_model_type;

DERIVE
class : data_class :=

NVL(SELF\fd_model.dclass, equation_set.class);
units : dimensional_units :=

NVL(SELF\fd_model.dimunits, equation_set.units);
INVERSE
equation_set : flow_equation_set FOR state;

WHERE
wr1 : SIZEOF(QUERY(v <* data |

consistent_data_array(v, 1, [1],
class, units, ?, ?))

= SIZEOF(data);
-- wr1 : DataArraysOK(DataArrays, DataType, 1, [1]);
END_ENTITY;
(*

Attribute definitions:

model type: is the particular equation of state model.

class: is the class of data;

units: is the dimensional units;

equation set: is the calling flow equation set.

Formal propositions:

wr1: The inherited DataArrays arrays shall be consistent.

5.2.2.3.16 thermal conductivity model

thermal conductivity model describes the model for relating the thermal-conductivity coef-
ficient (k) to temperature.

EXPRESS specification:

*)
ENTITY thermal_conductivity_model
SUBTYPE OF (fd_model);
model_type : thermal_conductivity_model_type;

DERIVE
class : data_class :=

NVL(SELF\fd_model.dclass, equation_set.class);
units : dimensional_units :=
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NVL(SELF\fd_model.dimunits, equation_set.units);
INVERSE
equation_set : flow_equation_set FOR thermal_conductivity;

WHERE
wr1 : SIZEOF(QUERY(v <* data |

consistent_data_array(v, 1, [1],
class, units, ?, ?))

= SIZEOF(data);
-- wr1 : DataArraysOK(DataArrays, DataType, 1, [1]);
END_ENTITY;
(*

Attribute definitions:

model type: is the particular model type.

class: is the class of data;

units: is the dimensional units;

equation set: is the calling flow equation set.

Formal propositions:

wr1: The inherited DataArrays arrays shall be consistent.

5.2.2.3.17 turbulence closure

turbulence closure describes the turbulence closure for the Reynolds stress terms of the
Navier-Stokes equations.

EXPRESS specification:

*)
ENTITY turbulence_closure
SUBTYPE OF (fd_model);
closure_type : turbulence_closure_type;

DERIVE
class : data_class :=

NVL(SELF\fd_model.dclass, equation_set.class);
units : dimensional_units :=

NVL(SELF\fd_model.dimunits, equation_set.units);
INVERSE
equation_set : flow_equation_set FOR closure;

WHERE
wr1 : SIZEOF(QUERY(v <* data |

consistent_data_array(v, 1, [1],
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class, units, ?, ?))
= SIZEOF(data);

-- wr1 : DataArraysOK(DataArrays, DataType, 1, [1]);
END_ENTITY;
(*

Attribute definitions:

closure type: is the particular closure type.

class: is the class of data;

units: is the dimensional units;

equation set: is the calling flow equation set.

Formal propositions:

wr1: The inherited DataArrays arrays shall be consistent.

5.2.2.3.18 turbulence model

turbulence model describes the equation set used to model the turbulence quantities.

.

EXPRESS specification:

*)
ENTITY turbulence_model
SUBTYPE OF (fd_model);
model_type : turbulence_model_type;
diffusion_model : OPTIONAL ARRAY [1:diff] OF BOOLEAN;

DERIVE
class : data_class :=

NVL(SELF\fd_model.dclass, equation_set.class);
units : dimensional_units :=

NVL(SELF\fd_model.dimunits, equation_set.units);
dimension : positive := equation_set.dimension;
diff : INTEGER := (dimension**2 + dimension)/2;

INVERSE
equation_set : flow_equation_set FOR turbulence;

WHERE
wr1 : SIZEOF(QUERY(v <* data |

consistent_data_array(v, 1, [1],
class, units, ?, ?))

= SIZEOF(data);
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-- wr1 : DataArraysOK(DataArrays, DataType, 1, [1]);
END_ENTITY;
(*

Attribute definitions:

model type: is the particular equation set;

diffusion model: is the description of the viscous diffusion terms included in the turbulent
transport model equations;

class: is the class of data;

units: is the dimensional units;

dimension: The number of indices required to reference a node.

diff: is the number of elements in diffusion model. For 1-D this is one, for 2-D it is three,
and for 3-D it is six.

equation set: is the calling flow equation set.

Formal propositions:

wr1: The inherited DataArrays arrays shall be consistent.

5.2.2.3.19 viscosity model

viscosity model describes the model for relating molecular viscosity (µ) to temperature.

EXPRESS specification:

*)
ENTITY viscosity_model
SUBTYPE OF (fd_model);
model_type : viscosity_model_type;

DERIVE
class : data_class :=

NVL(SELF\fd_model.dclass, equation_set.class);
units : dimensional_units :=

NVL(SELF\fd_model.dimunits, equation_set.units);
INVERSE
equation_set : flow_equation_set FOR viscosity;

WHERE
wr1 : SIZEOF(QUERY(v <* data |

consistent_data_array(v, 1, [1],
class, units, ?, ?))

= SIZEOF(data);
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-- wr1 : DataArraysOK(DataArrays, DataType, 1, [1]);
END_ENTITY;
(*

Attribute definitions:

model type: is the particular equation of state model.

class: is the class of data;

units: is the dimensional units;

equation set: is the calling flow equation set.

Formal propositions:

wr1: The inherited DataArrays arrays shall be consistent.

5.2.2.3.20 reference state

reference state describes a reference state, which is a list of geometric or flow-state quantities
defined at a common location or condition. Examples of typical reference states associated with
CFD calculations are freestream, plenum, stagntation, inlet and exit.

EXPRESS specification:

*)
ENTITY reference_state;
description : OPTIONAL texts;
state_description : OPTIONAL text;
data : LIST OF data_array;
dclass : OPTIONAL data_class;
dimunits : OPTIONAL dimensional_units;

DERIVE
class : data_class :=
NVL(dclass,

inherited_class_for_refstate(data_set, bc, zone_bc, zone, base));
units : dimensional_units :=
NVL(dimunits,

inherited_units_for_refstate(data_set, bc, zone_bc, zone, base));
INVERSE
base : BAG [0:1] OF cfd_base FOR refstate;
zone : BAG [0:1] OF zone FOR refstate;
data_set : BAG [0:1] OF bc_data_set FOR refstate;
bc : BAG [0:1] OF bc FOR refstate;
zone_bc : BAG [0:1] OF zone_bc FOR refstate;

WHERE
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wr1 : SIZEOF(CGNSBase) + SIZEOF(Zone) + SIZEOF(BCDataSet) +
SIZEOF(BC) + SIZEOF(ZoneBC) = 1;

wr3 : SIZEOF(QUERY(v <* data |
consistent_data_array(v, 1, [1],

class, units, ?, ?))
= SIZEOF(data);

-- wr3 : DataArraysOK(DataArrays, DataType, 1, [1]);
END_ENTITY;
(*

Attribute definitions:

description: is annotations;

state description: is a description of the reference state;

data: is the reference state data;

dclass: non-default data class;

dimunits: non-default dimensional units;

class: is the class of data;

units: is the system of units;

Formal propositions:

wr1: A reference state shall be called by one and only one of: cfd base, zone, bc data set,
bc, zone bc;

wr3: The data arrays shall be consistent.

5.2.2.3.21 convergence history

Flow solver convergence history information is described by the convergence history struc-
ture.

Measures used to record convergence vary greatly among current flow-solver implementations.
Convergence information typically includes global forces, norms of equation residuals, and norms
of solution changes.

NOTE 1 Attempts to systematically define a set of convergence measures have been futile. For global
parameters, such as forces and moments, clause G.3.3.12 provides a set of standarized data-array identi-
fiers. For equation residuals and solution changes, no such standard list exists. Therefore, adhoc data -
name has to be used as the data-array identifier. It is suggested that identifiers for norms of equation
residuals begin with RSD, and those for solution changes begin with CHG. For example, ‘RSDMass-
RMS’ could be used for the L2-norm (RMS) of mass conservation residuals.
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EXPRESS specification:

*)
ENTITY convergence_history;
description : OPTIONAL texts;
norm_definitions : OPTIONAL text;
iterations : INTEGER;
data : LIST OF data_array;
dclass : OPTIONAL data_class;
dimunits : OPTIONAL dimensional_units;

DERIVE
class : data_class :=

NVL(dclass, inherit_class_from_base_zone(base, zone));
units : dimensional_units :=

NVL(dimunits, inherit_units_from_base_zone(base, zone));
INVERSE
base : BAG [0:1] OF cfd_base FOR history;
zone : BAG [0:1] OF zone FOR history;

WHERE
wr1 : SIZEOF(CGNSBase) + SIZEOF(Zone) = 1;
wr3 : SIZEOF(QUERY(v <* data |

consistent_data_array(v, 1, [iterations],
class, units, ?, ?))

= SIZEOF(data);
-- wr3 : DataArraysOK(DataArrays, DataType, 1, [Iterations]);
END_ENTITY;
(*

Attribute definitions:

description: is annotations;

norm definitions: is a description of the convergence information recorded as data;

iterations: is the number of iterations for which convergence information is recorded;

data: is convergence history data;

dclass: non-default class of data;

dimunits: non-default system of dimensional units;

class: is the class of data;

units: is the system of dimensional units;

base: is the referencing database;

zone: is the referencing zone.
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Formal propositions:

wr1: A convergence history instance shall be called by either a CFD database or a zone;

wr3: The data arrays shall be consistent.

5.2.2.3.22 discrete data

discrete data provides a description of generic discrete data (i.e., data defined on a compu-
tational grid); it is identical to flow solution except for its entity name. This structure can
be used to store field data, such as fluxes or equation residuals, that is not typically considered
part of the flow solution.

EXPRESS specification:

*)
ENTITY discrete_data;
description : OPTIONAL texts;
gridloc : OPTIONAl grid_location;
rind : OPTIONAL rind;
data : LIST OF data_array;
dclass : OPTIONAL data_class;
dimunits : OPTIONAL dimensional_units;

DERIVE
location : grid_location := NVL(gridloc, vertex);
class : data_class := NVL(dclass, zone.class);
units : dimensional_units := NVL(dimunits, zone.units);
dimension : INTEGER := zone.dimension;
vertex_size : ARRAY [1:dimension] OF INTEGER := zone.vertex_size;
cell_size : ARRAY [1:dimension] OF INTEGER := zone.cell_size;
field_size : ARRAY [1:dimension] OF positive :=

field_data_size(dimension, vertex_size, cell_size,
location, rind);

INVERSE
zone : zone FOR field_data;

WHERE
wr1 : (NOT EXISTS(rind)) XOR (rind.dimension = dimension);
wr2 : NOT ((schdot+’UNSTRUCTURED_ZONE’ IN TYPEOF(zone)) AND EXISTS(rind));
wr3 : SIZEOF(QUERY(v <* data |

consistent_data_array(v, 1, field_size,
class, units, ?, ?))

= SIZEOF(data);
-- wr3 : DataArraysOK(DataArrays, DataType, dimension,
-- FieldDataSize(dimension, VertexSize, CellSize,
-- GridLocation, Rind));
wr5 : (location = vertex) XOR (location = cell_center);

END_ENTITY;
(*
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Attribute definitions:

description: is annotation;

gridloc: non-default grid location;

rind: is the Rind planes; if absent then it is equivalent to having an instance of Rind whose
RindPlanes array contains all zeroes.

data: is the data;

dclass: non-default data class;

dimunits: non-default dimensional units;

location: is the location of data with respect to the grid;

class: is the class of data;

units: is the system of dimensional units;

dimension: The number of indices required to reference a node.

vertex size: is the number of core vertices in each index direction;

cell size: is the number of core cells in each index direction;

field size: is the size of the discrete data arrays;

zone: is the calling zone.

Formal propositions:

wr1: If rind has a value then its dimension shall be the same as the the discrete data
dimension.

wr2: Discrete data for an unstructured zone shall not have a value for rind, as it is meaningless
in this case.

wr3: The data arrays shall be consistent.

wr5: The grid location shall be either vertex or cell center.

Informal propositions:

ip1: All data contained within this structure shall be defined at the same grid location and have
the same amount of rind-point data.

5.2.2.3.23 integral data

integral data provides a description of generic global or integral data that may be associated
with a particular zone or an entire database. In contrast to discrete data, integral data is not
associated with any specific field location.
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EXPRESS specification:

*)
ENTITY integral_data;
description : OPTIONAL LIST OF STRING;
data : LIST OF data_array;
dclass : OPTIONAL data_class;
dimunits : OPTIONAL dimensional_units;

DERIVE
class : data_class :=

NVL(dclass, inherit_class_from_base_zone(base, zone));
units : dimensional_units :=

NVL(dimunits, inherit_units_from_base_zone(base, zone));
INVERSE
base : BAG [0:1] OF cfd_base FOR miscellaneous;
zone : BAG [0:1] OF zone FOR global_data;

WHERE
wr1 : SIZEOF(CGNSBase) + SIZEOF(Zone) = 1;
wr2 : (NOT EXISTS(DataArrays)) XOR

(EXISTS(DataArrays) AND EXISTS(DataType));
wr3 : SIZEOF(QUERY(v <* data |

consistent_data_array(v, 1, [1],
class, units, ?, ?))

= SIZEOF(data);
-- wr3 : DataArraysOK(DataArrays, DataType, 1, [1]);
END_ENTITY;
(*

Attribute definitions:

description: is annotations;

data: is the data;

dclass: non-default class of data;

dimunits: non-default system of units;

class: is the class of data;

units: is the system of units;

base: is the calling cfd base.

zone: is the calling zone.

Formal propositions:

wr1: An instance of integral data shall be referenced by either a cfd base or a zone;

wr2: If DataArrays has a value then DataType shall also have a value;
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wr3: The data arrays shall be consistent.

5.2.2.4 Fluid dynamics data function definitions

5.2.2.4.1 schname

The function schname returns a string consisting of the uppercase name of the schema.

EXPRESS specification:

*)
FUNCTION schname : STRING;
RETURN(’CFD_AIM’);

END_FUNCTION;
(*

Argument definitions:

RETURNS: A string literal consisting of the name of the schema, in uppercase.

5.2.2.4.2 schdot

The function schdot returns a string consisting of the uppercase name of the schema with an
appended period.

EXPRESS specification:

*)
FUNCTION schdot : STRING;
RETURN(schname+’.’);

END_FUNCTION;
(*

Argument definitions:

RETURNS: A string literal consisting of the name of the schema, in uppercase, appended
with a period.

5.2.2.4.3 consistent data array

The function consistent data array returns TRUE if the attribute values of a data array
are consistent with an identified set of values.
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EXPRESS specification:

*)
FUNCTION consistent_data_array
(da : data_array;
dim : INTEGER;
szs : ARRAY OF INTEGER;
id : data_name;
class : data_class;
units : dimensional_units;
dexp : dimensional_exponents;
conv : data_conversion) : BOOLEAN;

IF (NOT EXISTS(da)) THEN RETURN(FALSE); END_IF;
IF (EXISTS(dim) AND (da.dimension <> dim)) THEN RETURN(FALSE); END_IF;
IF (EXISTS(id) AND (da.identifier <> id)) THEN RETURN(FALSE); END_IF;
IF (EXISTS(class) AND (da.class <> class)) THEN RETURN(FALSE); END_IF;
IF (EXISTS(units) AND (da.units <> units)) THEN RETURN(FALSE); END_IF;
IF (EXISTS(dexp) AND (da.exponents <> dexp)) THEN RETURN(FALSE); END_IF;
IF (EXISTS(conv) AND (da.conversion <> conv)) THEN RETURN(FALSE); END_IF;
RETURN(TRUE);

END_FUNCTION;
(*

Argument definitions:

da: A data array;

dim: A possible value for da’s dimension attribute;

id: A possible value for da’s identifier attribute;

class: A possible value for da’s class attribute;

units: A possible value for da’s units attribute;

dexp: A possible value for da’s exponents attribute;

conv: A possible value for da’s conversion attribute;

RETURNS: FALSE if there is no value for da; if there is a value for da, FLASE is returned
if any of the possible attributes has a value and it is not the same as the actual attribute value.
Otherwise, TRUE is returned.

5.2.2.4.4 inherit class from base zone

Given either a aggregate of cfd base or of zone the function returns the class.
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EXPRESS specification:

*)
FUNCTION inherit_class_from_base_zone(base : AGGREGATE OF cfd_base;

zone : AGGREGATE OF zone) : data_class;
IF (SIZEOF(base) > 0) THEN
RETURN(base[1].class);

ELSE
IF (SIZEOF(zone) > 0) THEN
RETURN(zone[1].class);

END_IF;
END_IF;
RETURN(?);

END_FUNCTION;
(*

Argument definitions:

base: A possibly empty aggregate of cfd base.

zone: A possibly empty aggregate of zone

RETURNS: The value of the class attribute for the first cfd base of the first zone. If there
is an error in the arguments, indeterminate is returned.

5.2.2.4.5 inherit units from base zone

Given either an aggregate of cfd base or of zone the function returns the units.

EXPRESS specification:

*)
FUNCTION inherit_units_from_base_zone(base : AGGREGATE OF cfd_base;

zone : AGGREGATE OF zone) : dimensional_units;
IF (SIZEOF(base) > 0) THEN
RETURN(base[1].units);

ELSE
IF (SIZEOF(zone) > 0) THEN
RETURN(zone[1].units);

END_IF;
END_IF;
RETURN(?);

END_FUNCTION;
(*
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Argument definitions:

base: A possibly empty aggregate of cfd base.

zone: A possibly empty aggregate of zone

RETURNS: The value of the units attribute for the first cfd base of the first zone. If there
is an error in the arguments, indeterminate is returned.

5.2.2.4.6 inherited class for refstate

The inherited class for refstate function determines a class of data.

EXPRESS specification:

*)
FUNCTION inherited_units_for_refstate(bd : AGGREGATE OF bc_data_set;

bc : AGGREGATE OF bc;
zb : AGGREGATE OF zone_bc;
zn : AGGREGATE OF zone;
db : AGGREGATE OF cfd_base)

: data_class;
IF (SIZEOF(bd) > 0) THEN RETURN(bd[1].class); END_IF;
IF (SIZEOF(bc) > 0) THEN RETURN(bc[1].class); END_IF;
IF (SIZEOF(zb) > 0) THEN RETURN(zb[1].class); END_IF;
IF (SIZEOF(zn) > 0) THEN RETURN(zn[1].class); END_IF;
IF (SIZEOF(db) > 0) THEN RETURN(db[1].class); END_IF;
RETURN(?);

END_FUNCTION;
(*

Argument definitions:

bd: A possibly empty aggregate of bc data set;

bc: A possibly empty aggregate of bc;

zb: A possibly empty aggregate of zone bc;

zn: A possibly empty aggregate of zone;

db: A possibly empty aggregate of cfd base;

RETURNS: The value of the data class which has the highest precedence. If there is an
error in the arguments, indeterminate is returned.

5.2.2.4.7 inherited units for refstate

The inherited units for refstate function determines dimensional units.
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EXPRESS specification:

*)
FUNCTION inherited_units_for_refstate(bd : AGGREGATE OF bc_data_set;

bc : AGGREGATE OF bc;
zb : AGGREGATE OF zone_bc;
zn : AGGREGATE OF zone;
db : AGGREGATE OF cfd_base)

: dimensional_units;
IF (SIZEOF(bd) > 0) THEN RETURN(bd[1].units); END_IF;
IF (SIZEOF(bc) > 0) THEN RETURN(bc[1].units); END_IF;
IF (SIZEOF(zb) > 0) THEN RETURN(zb[1].units); END_IF;
IF (SIZEOF(zn) > 0) THEN RETURN(zn[1].units); END_IF;
IF (SIZEOF(db) > 0) THEN RETURN(db[1].units); END_IF;
RETURN(?);

END_FUNCTION;
(*

Argument definitions:

bd: A possibly empty aggregate of bc data set;

bc: A possibly empty aggregate of bc;

zb: A possibly empty aggregate of zone bc;

zn: A possibly empty aggregate of zone;

db: A possibly empty aggregate of cfd base;

RETURNS: The value of the dimensional units which has the highest precedence. If there
is an error in the arguments, indeterminate is returned.

5.2.2.4.8 grid data size

The grid data size function calculates the required array sizes of grid-coordinate data for
grid coordinates, namely the core points plus any rind points.

EXPRESS specification:

*)
FUNCTION grid_data_size(arg : grid_coordinates) : ARRAY OF positive;
LOCAL
dim : positive := arg.dimension;
result : ARRAY [1:dim] OF positive;

END_LOCAL;
REPEAT i := 1 TO dim;
result[i] := arg.vertex_size[i];

END_REPEAT;
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IF (EXISTS(arg.rind)) THEN
REPEAT i := 1 TO dim;
result[i] := result[i] + arg.rind.planes[2*i-1]

+ arg.rind.planes[2*i];
END_REPEAT;

END_IF;
RETURN(result);
END_FUNCTION;
(*

Argument definitions:

arg: A grid coordinates

RETURNS: An array of positive of size arg.dimension.

5.2.2.4.9 field data size

The field data size function calculates data array sizes for data defined on a grid, namely the
core points plus any rind points. The actual values also depend on the grid location.

EXPRESS specification:

*)
FUNCTION field_data_size(dim : positive;

vs : ARRAY OF positive;
cs : ARRAY OF positive;
gl : grid_location;
rind : rind) : ARRAY OF nonnegative;

LOCAL
result : ARRAY [1:dim] OF positive;

END_LOCAL;
IF (gl = vertex) THEN
REPEAT i := 1 TO SIZEOF(vs);
result[i] := vs[i];

END_REPEAT;
ELSE
IF (gl = cell_center) THEN
REPEAT i := 1 TO SIZEOF(cs);
result[i] := cs[i];

END_REPEAT;
END_IF;

END_IF;
IF (EXISTS(rind)) THEN
REPEAT i := 1 TO dim;
result[i] := result[i] + rind.planes[2*i-1]

+ rind.planes[2*i];
END_REPEAT;
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END_IF;
RETURN(result);
END_FUNCTION;
(*

Argument definitions:

dim: A dimension

vs: An array of positive of size dim containing the number of core vertices in each index
direction.

cs: An array of positive of size dim containing the number of core cells in each index direction.

gl: A grid location specifying the location of data with respect to a grid.

rind: A rind specifying the number of rind planes included in the data.

RETURNS: An array of positive of size dim.

EXPRESS specification:

*)
END_SCHEMA; -- cfd_aim
(*
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6 Conformance requirements
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Annex A
(normative)

AIM EXPRESS expanded listing

The following EXPRESS is the expanded form of the short form schema given in 5.2. In the
event of any discrepancy between the short form and this expanded listing, the expanded listing
shall be used.
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Annex B
(normative)

AIM short names

Table B.1 provides the short names of entities specified in the AIM of this part of ISO 10303.
Requirements on the use of the short names are found in the implementation methods included
in ISO 10303.
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Annex C
(normative)

Implementation method specific requirements

The implementation method defines what types of exchange behaviour are required with respect
to this part of ISO 10303. Conformance to this part of ISO 10303 shall be realized in an exchange
structure. The file format shall be encoded according to the syntax and EXPRESS language
mapping defined in ISO 10303-21 and in the AIM defined in annex A of this part of ISO 10303.
The header of the exchange structure shall identify use of this part of ISO 10303 by the schema
name ‘(TBD — SCHEMA NAME)’.
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Annex D
(normative)

Protocol Implementation Conformance Statement (PICS) proforma

This clause lists the optional elements of this part of ISO 10303. An implementation may choose
to support any combination of these optional elements. However, certain combinations of options
are likely to be implemented together. These combinations are called conformance classes and
are described in the subclauses of this annex.

This annex is in the form of a questionnaire. This questionnaire is intended to be filled out by
the implementor and may be used in preparation for conformance testing by a testing laboratory.
The completed PICS proforma is referred to as a PICS.
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Annex E
(normative)

Information object registration

74 c©ISO 2000 — All rights reserved



Nxxxx ISO/WD 10303-2fd:2000(E)

Annex F
(informative)

Application activity model

The application activity model (AAM) is provided as an aid in understanding the scope and
information requirements defined in this application protocol. The model is presented as a set
of figures that contain the activity diagrams and a set of definitions of the activities and their
data. The application activity model is given in Figures F.1 to F.6. Activities and data flows
that are out of scope are marked with an asterisk.

F.1 Introduction

The application activity model (AAM) is provided as an aid to understanding the scope and
information requirements defined in this application protocol. At present, this AAM is restricted
in scope to data associated with the process and activities of Computational Fluid Dynamics
(CFD) analysis. In the future, the AAM will be extended to include aerodynamic data from
ground test and flight test sources.

F.2 Application activity model background

This model describes the overall CFD analysis process, from the perspective of an aerospace
manufacturer. The fluid dynamics AP will be developed in stages. The reader is referred to
clause 1 for a full description of the initial and ultimate scope of this standard. In its initial
state, this part of ISO 10303 defines data standards for laminar, transitional, and turbulent flow
of a homogeneous ideal gas. Analyses may be performed on any combination of multi-block
structured and/or unstructured grids.

The initial purpose of this part of ISO 10303 is to provide a standard for recording and recov-
ering computer data associated with the numerical solution of the equations of fluid dynamics.
The format implemented by this standard is (1) general, (2) portable, (3) expandable, and (4)
durable. It is expected that this standard will be extended, in future activity, to provide for
storage and retrieval of data from non-analytical sources such as wind tunnel or water tank
testing, and flight testing or sea trials.

This part of ISO 10303 consists of a collection of conventions for the storage and retrieval of CFD
(computational fluid dynamics) data. The system provides for a standard format for recording
the data. A key characteristic of CFD data is that is consists of a relatively small number of
very large data arrays. The data format is a conceptual entity established by the documentation
intended to do the following:

— Facilitate the exchange of CFD data

• between sites.

• between applications codes.

c©ISO 2000 — All rights reserved 75



ISO/WD 10303-2fd:2000(E) Nxxxx

• across computing platforms.

— Stabilize the archiving of CFD data.

The conventions of this part of ISO 10303 provide for recording a complete and flexible problem
description. The exact meaning of a subsonic inflow boundary condition, for example, can
be described in complete detail if desired. User comments can be appended nearly anywhere,
affording the opportunity, for instance, for date stamping or history information to be included.
Dimension and sizing information is carefully defined. Any number of flow variables may be
recorded, with or without standard names, and it is also possible to add user-defined or site-
specific data. These features afford the opportunity for applications to perform extensive error
checking if desired.

Because of this generality, this part of ISO 10303 provides for the recording of much more
descriptive information than current applications normally use. However, the provisions for this
data are layered so that much of it is optional. It should be practical to convert most current
applications to conform to this part of ISO 10303 with little or no conceptual change, retaining
the option to take advantage of more detailed descriptions as that becomes desirable.

The specifications of this part of ISO 10303 currently cover the bulk of CFD data that one might
wish to exchange among sites or applications; for instance, nearly any type of field data can
be recorded, and, based on its name, found and understood by any code that needs it. Global
data (e.g., freestream Mach Number, Reynolds number, angle of attack) and physical modeling
instructions (e.g., thin layer assumptions, turbulence model) may be specified.

Nevertheless, there are items specific to individual applications for which there is currently no
specification within this part of ISO 10303. Most commonly, these are operational instructions,
such as number of sweeps, solution method, multigrid directives, and so on. Owing to the
miscellaneous nature of this data, there has been no attempt to codify it within a global standard.
It is therefore expected that many applications will continue to require small user-generated
input files, presumably in ASCII format.

This part of ISO 10303 provides for an extensive set of CFD data. Most applications will make
use of only a small subset of this data. Further, inasmuch as applications are viewed as editors
that are in the process of building the database, most of them are intended for use on incomplete
data sets. Therefore, it is not required that all the data elements specified by these conventions
be complete in order for a database to be compliant with this part of ISO 10303. The user
must ensure that the current state of the database will support whatever application may be
launched. Of course, the application should gracefully handle any absence or deficiency of data.
The validity, accuracy and completeness of the data are determined entirely by the applications
software.

This part of ISO 10303 serves not only to facilitate the mapping of data onto the compliant file
structure but also to standardize the meaning of the recorded data. Thus there are two kinds
of conventions operative this standard.
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Adherence to the File Mapping: conventions guarantees that conforming software will
be able to find and read the data.

Adherence to the Data Definitions: guarantees uniformity of meaning among users
and between applications.

This part of ISO 10303 generally avoids the storage of redundant data. Sometimes an application
may require an alternate (but intellectually equivalent) form of the data; in such cases it is
recommended that the alternate form be prepared at the time of use and kept separate from
the Fluid Dynamics AP data file. This avoids habitual reliance on the alternate form, which
would invalidate the standard. If the alternate form is appended to the file, care must be taken
to update the primary (Fluid Dynamics AP) form whenever permanent changes are made.

F.3 Application activity model definitions

The following terms are used in the application activity model. Terms marked with an asterisk
are outside the scope of this application protocol. The definitions given in this annex do not
supersede the definitions given in the main body of the text.

F.3.1
Acquire and Modify Geometry
The activity of getting the geometric shape of a product and recasting it in a form suitable for
an analysis.

F.3.2
Adaptive Modification to FD Model and Process
The activity of revising the computational model and process.

F.3.3
Adjusted Geometry
Modified geometry that is potentially closer to meeting the requirements.

F.3.4
Adjusted Geometry & Modeling Parameters
Adjusted geometry and modeling parameters revised as a result of a prior analysis.

F.3.5
Analysis data
Data resulting from an analysis.

F.3.6
Analysis Objectives
The desired objectives to be met by an analysis.

F.3.7
Approved Data to Customer
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Analysis results intended for transmission to a customer. The results have a formal stamp of
approval.

F.3.8
Approved Optimized Geometry
Modified geometry that best meets the requirements. The geometry has a formal stamp of
approval.

F.3.9
Approved Results
Results from an analysis that have a formal stamp of approval.

F.3.10
Build and Run Analysis Model
The activity of creating a and running a simulation of a product under particular conditions.

F.3.11
Build FD Computational Model
The activity of creating a simulation of a FD process.

F.3.12
Build Product*
The activity of physically making a product.

F.3.13
Build Prototype*
The activity of physically making a prototype of an intended product.

F.3.14
Compute Flowfield
The activity of computing a FD flowfield.

F.3.15
Computing Implementation
One or more particular computer programs.

F.3.16
Concept
The initial ideas about how a product may be realised.

F.3.17
Conduct Analysis of Design
The activity of simulating the performance of a design of a potential product.

F.3.18
Convergence Error
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TBD

F.3.19
Definition of Expected Flow Physics
The expected flow process physics to be simulated.

F.3.20
Definition of Expected Physics
The expected physical aspects to be simulated.

F.3.21
Design, Build, Test and Ship Product
The activity encompassing the the lifecycle stages from designing through delivering a product.

F.3.22
Design Product
The activity of designing a product and generating the information required for it to be made.

F.3.23
Develop Product Design*
The activity of designing a product.

F.3.24
Develop Manufacturing Information*
The activity of generating the information required for a designed product to be made.

F.3.25
Engineering data
TBD

F.3.26
Environment
The product’s operating environment which should be simulated.

F.3.27
Error estimates
Estimates of errors in an analysis.

F.3.28
Extent & Environment
For a CFD analysis, the overall physical space to be simulated, and the environment.

F.3.29
Extract FD Engineering Data
The activity of generating engineering-related quantities from FD analysis flowfield data.
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F.3.30
Extract Results
The activity of generating engineering-related quantities from analysis result data.

F.3.31
Flow Conditions of Interest
The kind of flow conditions to be analysed.

F.3.32
Flowfield data
Detailed numerical data describing a simulated FD flow.

F.3.33
Geometry
Geometry representing the shape of a product. It may be the result of a design (e.g., a blueprint)
or from an analysis.

F.3.34
Grid and Boundary Conditions
The mesh and the boundary conditions used for computing a flowfield.

F.3.35
Manufacturing information*
The information necessary to describe how a product should be built.

F.3.36
Materials*
Physical materials required for building a product.

F.3.37
Mathematical Model
The mathematics forming the basis of a simulation.

F.3.38
Mathematical Model of Fluid Dynamics
The mathematics forming the basis of a FD simulation.

F.3.39
Modeling Parameters
TBD

F.3.40
Practices*
Legal, industrial and company specific practices.

F.3.41
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Product*
The physical manifestation of a product.

F.3.42
Prototype*
A potential product or physical model of one.

F.3.43
Optimize Geometry*
The activity of modifying geometry to better meet the requirements.

F.3.44
Optimized Geometry

F.3.45
Resolution Equations
TBD

F.3.46
Requirements
The desired product functionality.

F.3.47
Ship Product*
The activity of shipping a product from its place of manufacture.

F.3.48
Staff & Tools*
Personnel and facilities.

F.3.49
Surface Geometry
The geometry representing the surface of a solid.

F.3.50
Test data*
Data resulting from physical tests.

F.3.51
Test Product*
The activity of physically testing a product.

F.3.52
Test Prototype*
The activity of physically testing a prototype.
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F.4 Application Process Description

The application activity model diagrams are given in Figures F.1 through F.6. The graphical
form of the application activity model is presented in the IDEF0 activity modeling format.
Activities and data flows that are out of scope are shown with dashed lines.

Figures F.1 and F.2 show the general very high level activities related to the design, manufacture,
and delivery of a product. Analysis is not apparent at this level.

Figure F.3 shows in more detail the general activities related to the design of a product, one of
which is analysing potential designs to estimate their performance against the requirements.

Figure F.4 provides more detail on the activities related to the analysis of a design. At this
level, particular analysis processes are not specified. The CFD process is particularised at the
next lower level.

The first part of the Computational Fluid Dynamics Process is illustrated in Figure F.5 and
consists of a number of process components. At a minimum these include:

A1211: Acquire and Modify Geometry;

A1212: Build FD Computational Model;

A1213: Compute Flowfield.

The second, and final, part of the process is illustrated in Figure F.6. This consists of at least:

A1221: Extract FD Engineering Data;

and may further include:

A1222: Adaptive Modification to FD Model and Process, and/or

A1223: Optimize Geometry.

The Fluid Dynamics AP data standard will be utilized throughout this process, as illustrated
in Figure F.7.

The initial source of geometry is a Computer-Aided Design (CAD) system, or a prior analysis
which could have been a Finite Element or a CFD analysis, or another source. In many cases,
it is necessary to edit the geometry that is provided. This editing may be done to remove
complexity from the geometry, and thus reduce the cost and cycle time of the subsequent CFD
analysis. In some cases, the geometry may be modified to represent intentionally a model which is
different from the baseline model that was represented in the original geometry definition. These
modifications, if required, represent the first stage of the analysis process: ‘Acquire and Modify
Geometry’ (Process A1211). The product of this process stage is a geometry file representing
the surfaces over which fluid may flow.
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The CFD analysis process consists of three major stages:

a) Build FD Computational Model (Process A1212) — Using the provided geometry, build
the mathematical model and required coordinate systems for the subsequent CFD analysis.
The product of this stage is the computational model, represented in the Fluid Dynamics
AP format.

b) Compute Flowfield (Process A1213) — Apply the CFD analysis program(s) to the math-
ematical model to produce the simulation of the aerodynamic flowfield. The flowfield pre-
dictions are captured in the Fluid Dynamics AP format.

c) Extract FD Engineering Data (Process A1221) — Extract from the complete flowfield
simulation, the data required to meet the end-user’s objectives. Typically, these are reduced
data such as the net forces which are applied to components of the geometry through the
action of the aerodynamic flowfield. The products of this stage of the process may be
user-ready data as graphs, printed data, reports, etc., or the products may be additional
information which is captured in the Fluid Dynamics AP format.

In some instances, the process also may include one or two recursive loops:

a) Adaptive Modification to FD Model and Process (Process A1222) — In this loop, the char-
acteristics of the flow solver (Process A1213) or the computational model (Process A1212)
are modified to improve accuracy or reduce cost of the predictions. These adjustments are
controlled by an adaptive algorithm, and by intermediate characteristics of the predicted
flowfield. The products of this stage are modifications to the mathematical model and the
parameters of the flowfield simulation, stored in the Fluid Dynamics AP format.

b) Optimize Geometry (Process A1223) — In this recursive loop, the analysis geometry is
modified based on intermediate flowfield predictions. This geometry modification is made
to optimize some attribute of the interaction between the geometry and the flowfield. The
products of this stage of the process are: modified geometry; and/or a modified mathemat-
ical model or flowfield simulation (Fluid Dynamics AP format).

F.5 Process Variant Approaches

The CFD analysis process includes a number of variant approaches. The relationship of these
variant approaches to this part of ISO 10303 is discussed in this subclause.

F.5.1 Equations of Fluid Dynamics

Many different sets of equations of fluid dynamics are used as the basis of a CFD process. Some
of the more common mathematical models are known as:

— Navier-Stokes Equations

— Euler Equations
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— Nonlinear Potential Flow Equation

— Linear Potential Flow Equation

— Small-Disturbance Equations

— Boundary Layer Equations

— Stream Function Equations

Each of these top-level mathematical models has a number of sub-models, in areas such as
computational grid (see F.5.2), flow physics models (see F.5.3), discretization, boundary and
initial conditions, and solution algorithm. The CFD analysis process flow is roughly the same
for all of these approaches.

F.5.2 Computational Grid

The computational grid provides a local coordinate system for the solution of the mathematical
model governing the fluid dynamics problem at issue. Often, the coordinate systems are quite
complex, as they as transformed and warped to conform to the details of the geometry to be
analyzed. For complex geometries, it is common to introduce multiple independent coordinate
systems in subdomains of the flowfield — these subdomains often are called ‘blocks’. Together,
all the blocks or subdomains must span the entire flowfield that is to be analyzed.

Several broad types of computational grids are embraced within this part of ISO 10303. These
types include:

— Structured grid.

— Structured multi-block 1:1 abutting grid (the coordinate systems are continuous across the
boundaries between adjacent blocks).

— Structured multi-block mismatched abutting grid (the coordinate systems are discontinuous
across the boundaries between adjacent blocks).

— Structured overset grids (the coordinate systems of adjacent blocks will overlap to a material
degree).

— Unstructured tetrahedral grids

— Unstructured prismatic grids

— Unstructured arbitrary N-sided grids.

The three types of multi-block structured grids are illustrated in Figure G.14 through Fig-
ure G.16.
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F.5.3 Flow Physics Models

The equations of fluid dynamics (see F.5.1) describe the conservation of mass, momentum, and
energy in a moving fluid. These equations are not adequate, by themselves, to carry out pre-
dictions. Additional equations are needed to describe the relationship between thermodynamics
properties of the fluid (pressure, temperature, density, viscosity, thermal conductivity, etc). De-
pending on the requirements of a specific analysis, additional sets of mathematical models may
be required to describe the overall impact of turbulence, to describe the impact of chemical
reactions such as combustion, and to describe the interaction of an electrically conducting fluid
in the presence of electromagnetic fields.
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Annex G
(informative)

Application reference model

G.1 Introduction

This annex provides the application reference model for this part of ISO 10303. The application
reference model is a representation of the structure and constraints of the application objects
specified in clause 4. The application reference model is presented in both EXPRESS and EX-
PRESS-G. The application reference model is independent from any implementation method.
EXPRESS-G is defined in annex D of ISO 10303-11.

The major goal of this ARM is a comprehensive and unambiguous description of the intellectual
content of information that must be passed from code to code in a structured-grid multiblock
Navier-Stokes analysis system. This information includes grids, flow solutions, multiblock inter-
face connectivity, boundary-conditions, reference states, and dimensional units or normalization
associated with data.

The goal is the description of data sets typical of CFD analysis, which tend to contain a small
number of extremely large data arrays.

The ARM describes a hierarchical database, precisely defining both the data and their hierar-
chical relationships.

There are two major alternatives to organizing a CFD hierarchy: topologically based and data-
type based. In a topologically based graph, overall organization is by multiblock zones; informa-
tion pertaining to a particular zone, including its grid coordinates or flow solution, hangs off the
zone. In a data-type based graph, organization is by related data. For example, there would be
two nodes at the same level, one for grid coordinates and another for the flow solution. Hanging
off each of these nodes would be seperate lists of the zones.

The hierarchy described here is topologically based; a simplified illustration of the database
hierarchy is shown in Figure G.1. Hanging off the root ‘node’ of the database is a node containing
global reference-state information, such as freestream conditions, and a list of nodes for each
zone. The figure shows the nodes that hang off the first zone; similar nodes would hang off of
each zone in the database. Nodes containing the physical-coordinate data arrays (x, y and z) for
the first zone are shown hanging off the ‘grid coordinates’ node. Likewise, nodes containing the
first zone’s flow-solution data arrays hang off the ‘flow solution’ node. The figure also depicts
nodes containing multiblock interface connectivity and boundary condition information for the
first zone; subnodes hanging off each of these are not pictured.

Conceptually, an analysis can be thought of as having four components, as in this extremely
brief model:

ENTITY analysis;
domain : computational_space;
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Figure G.1 – Topologically based CFD hierarchy

equations : SET OF equation;
conditions : SET OF condition;
results : SET OF solution;

END_ENTITY;

The domain is the representation of the computational space (typically a discrete approxi-
mation to a continuum). The equations are the mathematical formulations of the physics of
the problem at hand and the conditions are the conditions (e.g., boundary conditions or con-
straints) that apply to the particular analysis. Finally, the results are the calculated solutions
to the equations subject to the conditions over the domain, and possibly other data resulting
from the analysis.

The ARM model was initially based on CGNS Standard Interface Data Structures [1], together
with extensions proposed in SIDS additions/modifications to support unstructured meshes and
geometry links [2]. These two documents are now merged into a new version The CFD General
Notation System: Standard Interface Data Structures [3], and this is the basis for the current
ARM model.

The model consists of a set of schemas and the relationships between these are shown in Fig-
ure G.2.

G.2 hierarchy

The following EXPRESS declaration begins the hierarchy schema and identifies the necessary
external references.
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domain conditions equations results

hierarchy

basis

Figure G.2 – Schema level ARM diagram (page 1 of 1)

EXPRESS specification:

*)
{iso standard 10303 part (11) version (4)}
SCHEMA hierarchy;
REFERENCE FROM basis;
REFERENCE FROM domain;
REFERENCE FROM conditions;
REFERENCE FROM equations;
REFERENCE FROM results;

(*

G.2.1 Introduction

This schema defines and describes the structure types for the top levels of the CFD hierarchy.
The hierachy is topologically based, where the overall organization is by multiblock zones.

The graphical form for the hierarchy schema is given in Figures G.3 through G.6.

G.2.2 Fundamental concepts and assumptions

All information pertaining to a given zone, including grid coordinates, flow solution, and other
related data, is contained within that zone’s structure entity.

Structures for describing or annotating the database are provided; these same descriptive mech-
anisms are provided at all levels of the hierarchy.
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2,1 cfd case

basis.textual

3,1 zone

basis.label(ABS) analysis

product analysis

(ABS) product

descriptions L id

1

the analysis

the product

Figure G.3 – Entity level diagram of ARM hierarchy schema (page 1 of 4)

G.2.3 hierarchy entity definitions

G.2.3.1 analysis

An analysis represents the concept of a mathematical and/or numerical anlaysis.

EXPRESS specification:

*)
ENTITY analysis;
descriptions : OPTIONAL LIST OF textual;
id : label;

END_ENTITY;

SUBTYPE_CONSTRAINT sc1_analysis FOR analysis;
ABSTRACT SUPERTYPE;
ONEOF(cfd_case,

zone);
END_SUBTYPE_CONSTRAINT;
(*
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conditions.family

basis.data class

INTEGER

basis.cfd pdm

basis.dimensional units

conditions.reference state

conditions.integral data

equations.flow equation set

results.convergence history

cfd case

2,1 (1)

3,2 zone

history

zones L

families L

class

cell dimension

physical dimension

admin

units

refstate

data L

equations

Figure G.4 – Entity level diagram of ARM hierarchy schema (page 2 of 4)
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conditions.family

basis.data class

INTEGER

3,2 (2)

results.flow solution

conditions.zone bc

grid.grid coordinates

basis.dimensional units

conditions.reference state

conditions.integral data

results.discrete data

results.convergence history

equations.flow equation set

grid.zone grid connectivity

(ABS)
zone

3,1 (1)

4,1 structured zone 4,2 unstructured zone1

family name

dclass

(DER) class

(INV) base S[1:?]

(DER) physical dimension
(DER) nindices

vertex count

cell count
(DER) cell dimension

solution L

conditions

coordinates

dimunits

(DER) units

rstate

(DER) refstate

global data L

field data L

history

floweqset

(DER) equations

grid connectivity

Figure G.5 – Entity level diagram of ARM hierarchy schema (page 3 of 4)
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structured zone

4,1 (3)

unstructured zone

4,2 (3)

(ABS) element

GENERIC

cells L

attributes L

Figure G.6 – Entity level diagram of ARM hierarchy schema (page 4 of 4)

Attribute definitions:

descriptions: Annotations;

id: User-specified instance identifier;

G.2.3.2 cfd case

The highest level structure in a CFD database is cfd case. It contains the dimensionality of the
grid and a list of zones making up the domain. Globally applicable information, including a refer-
ence state, a set of flow equations, dimensional units, and convergence history are also attached.
In addition, structures for describing or annotating the database are also accomodated.

EXPRESS specification:

*)
ENTITY cfd_case
SUBTYPE OF (analysis);
cell_dimension : INTEGER;
physical_dimension : INTEGER;
zones : OPTIONAL LIST OF zone;
refstate : OPTIONAL reference_state;
class : data_class;
units : OPTIONAL dimensional_units;
equations : OPTIONAL flow_equation_set;
history : OPTIONAL convergence_history;
data : OPTIONAL LIST OF integral_data;
families : OPTIONAL LIST OF family;
admin : cfd_pdm;
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END_ENTITY;
(*

Attribute definitions:

cell dimension: The dimension of cells in the mesh.

physical dimension: The number of coordinates required to define a node position.

zones: Data specific to each zone or block in a multiblock case. The size of the list defines the
number of zones or blocks in the domain.

refstate: Reference data applicable to the entire database; quantities such as Reynolds number
and freestream Mach number are given here (for external flow problems).

class: Global default data class for the database. If the CFD database contains dimensional
data (e.g., velocity with units of m/s), units may be used to describe the system of units
employed.

units: Specification of the global default units;

equations: Description of the governing flow equations associated with the entire database.
This structure contains information on the general class of governing equations (e.g., Euler or
Navier-Stokes), equation sets required for closure, including turbulence modelling and equations
of state, and constants associated with the equations.

history: Global relevant convergence history. The convergence information includes total con-
figuration forces, global parameters (e.g., freestream angle-of-attack), and global residual and
solution-change norms taken over all the zones.

data: Miscellaneous data. Candidates for inclusion are global forces and moments.

families: Global family information;

admin: Administrative and Product Data Management data.

class, units, refstate and equations have special function in the CFD hierarchy. They are
globally applicable throughout the database, but their values may be superseded by local entities
(e.g., within a given zone).

G.2.3.3 product analysis

product analysis captures a relationship between a product and an analysis of (part of) the
product.

EXPRESS specification:

*)
ENTITY product_analysis;
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the_product : product;
the_analysis : cfd_case;

END_ENTITY;
(*

Attribute definitions:

the product: the product under analysis;

the analysis: the analysis of the product.

G.2.3.4 product

A product.

NOTE product is defined in ISO 10303-41.

EXPRESS specification:

*)
ENTITY product
ABSTRACT;

END_ENTITY;
(*

G.2.3.5 zone

zone contains all information pertinent to an individual multiblock zone. This information
includes the number of cells and vertices making up the grid, the physical coordinates of the
grid vertices, the flow solution, multiblock interface connectivity, boundary-conditions, and zonal
convergence-history data. In addition this structure contains a reference state, a set of flow
equations and dimensional units that are all unique to the zone.

EXPRESS specification:

*)
ENTITY zone
SUBTYPE OF (analysis);
vertex_count : ARRAY [1:nindices] OF INTEGER;
cell_count : ARRAY [1:nindices] OF INTEGER;
coordinates : OPTIONAL grid_coordinates;
family_name : OPTIONAL family;
solution : OPTIONAL LIST OF flow_solution;
field_data : OPTIONAL LIST OF discrete_data;
global_data : OPTIONAL LIST OF integral_data;
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grid_connectivity : OPTIONAL zone_grid_connectivity;
conditions : OPTIONAL zone_bc;
rstate : OPTIONAL reference_state;
dclass : OPTIONAL data_class;
dimunits : OPTIONAL dimensional_units;
floweqset : OPTIONAL flow_equation_set;
history : OPTIONAL convergence_history;

DERIVE
cell_dimension : INTEGER := base.cell_dimension;
physical_dimension : INTEGER := base.physical_dimension;
nindices : INTEGER := derive_zone_dimension(SELF);
class : data_class := NVL(dclass, base.class);
units : dimensional_units := NVL(dimunits, base.units);
equations : flow_equation_set:= NVL(floweqset, base.equations);
refstate : reference_state := NVL(rstate, base.refstate);

INVERSE
base : SET [1:?] OF cfd_case FOR zones;

END_ENTITY;

SUBTYPE_CONSTRAINT sc1_zone FOR zone;
ABSTRACT SUPERTYPE;
ONEOF(structured_zone,

unstructured_zone);
END_SUBTYPE_CONSTRAINT;
(*

Attribute definitions:

vertex count: is the number of vertices in each index direction. it is the number of vertices
defining ‘the grid’ or the domain (i.e., without rind points).

cell count: is the number of cells in each index direction. It is the number of cells on the
interior of the domain.

coordinates: are the physical coordinates of the grid vertices. This structure defines ‘the grid’;
it may optionally contain physical coordinates of rind or ghost points.

family name: Identifies to which family the zone belongs to. Family names may be used to
define material properties.

solution: is the flow-solution quantities. Each instance of flow solution shall only contain
data at a single grid location (vertices, cell-centers, etc.); therefore, multiple flow solution
structures are provided to store flow-solution data at different grid locations. These structures
may optionally contain solution data defined at rind points.

field data: is miscellaneous field data. Candidate information includes residuals, fluxes and
other discrete data that is considered auxiliary to the flow solution.

global data: is miscellaneous zone-specific global data, other than reference-state data and
convergence history information.

grid connectivity: is the multiblock interface-connectivity information.
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conditions: is the boundary-condition information.

rstate: non-default reference-state data.

dclass: non-default class of data.

dimunits: non-default system of units.

floweqset: if a set of flow equations are specific to an individual zone, these are described
here.

EXAMPLE 1 For example, if a single zone in the domain is inviscid, whereas all others are turbulent,
then this zone-specific equation set could be used to describe the special zone.

history: is the convergence history of the zone; this includes residual and solution-change
norms.

cell dimension: The dimension of a cell in the mesh.

physical dimension: The number of coordinates required to define a node position.

nindices: The number of indices required to identify uniquely a vertex or a cell in the grid.
It is the indexical dimensionality of the computational grid. For structured-grid calculations,
nindices is usually the same as the spatial problem being solved (e.g., nindices=3 for a 3-D
problem). For lower-dimensional flowfields, such as quasi 3-D flow, nindices may not be the
same as the dimensionality of the position vector or the velocity vector. For unstructured grids,
usually nindices=1 since all the grid points and flow solution variables are stored in 1-D arrays.
However, there are instances, such as prismatic boundary-layer grids, where nindices may be
2.

class: is the zonal default for the class of data contained in the zone and its substructures.

units: is the description of the system of dimensional units in the zone.

refstate: is reference-state data specific to the individual zone.

equations: is the fow equation set.

base: is the database.

G.2.3.6 structured zone

structured zone contains the information pertinent to an individual structured multiblock
zone.

EXPRESS specification:

*)
ENTITY structured_zone
SUBTYPE OF (zone);

END_ENTITY;
(*
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NOTE 1 For structured grids in 3-D, CellSize = VertexSize - [1,1,1].

G.2.3.7 unstructured zone

unstructured zone contains the information pertinent to an individual unstructured zone.

EXPRESS specification:

*)
ENTITY unstructured_zone
SUBTYPE OF (zone);
cells : LIST OF element;

END_ENTITY;
(*

Attribute definitions:

cells: the connected elements comprising the zone.

G.2.3.8 element

An element is a cell in an unstructured grid. The shape of a cell may be a simple two-
dimensional bar or a three-dimensional hexahedron, or another of a range of shapes.

NOTE 1 Elements are described in detail in ISO 10303-5w.

EXPRESS specification:

*)
ENTITY element;
ABSTRACT;
attributes : LIST OF GENERIC;

END_ENTITY;
(*

Argument definitions:

attributes: the defining values.
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G.2.4 hierarchy function definitions

G.2.4.1 derive zone dimension

derive zone dimension takes a zone as an argument and returns the value of the indexical
dimensionality of the computational grid. This is the number of indices required to identify a
vertex.

For a structured zone the dimensionality is the same as the cell dimension. For an unstructured
zone the dimensionality is always 1.

EXPRESS specification:

*)
FUNCTION derive_zone_dimension(arg : zone) : INTEGER;
IF (’structured_zone’ IN TYPEOF(arg)) THEN
RETURN(arg.cell_dimension);

ELSE
IF (’unstructured_zone’ IN TYPEOF(arg)) THEN
RETURN(1);

END_IF;
END_IF;
RETURN(?);

END_FUNCTION;
(*

Argument definitions:

arg: A zone.

RETURNS: The inexical dimensionality of the computational grid if the zone is either a
structured or an unstructured zone, otherwise it returns indefinate.

EXPRESS specification:

*)
END_SCHEMA; -- end of hierarchy
(*

G.3 basis

The following EXPRESS declaration begins the basis schema and identifies the necessary
external references.
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EXPRESS specification:

*)
SCHEMA basis;
REFERENCE FROM conditions (bc_type, Riemann_1D_data_name);
REFERENCE FROM equations (turbulence_data_name);
REFERENCE FROM results (flow_solution_data_name, force_moment_data_name);

(*

G.3.1 Introduction

This schema defines and describes low-level structures and types that are used in the definition
of more complex structures in the hierarchy.

The graphical form for the basis schema is given in Figures G.7 through G.11.

G.3.2 Fundamental concepts and assumptions

The structure type data array is a general purpose structure used for holding data arrays and
scalars throughout the CFD hierarchy. It is used to describe grid coordinates, flow-solution
data, governing flow parameters, boundary-condition data, and other information. For most of
these different types of CFD data, a list of standardized identifiers is provided. For example,
the standardized identifier density is used for data arrays containing static density data.

Five classes of data are addressed with the data array structure type:

a) dimensional data (e.g., velocity in units of m/s);

b) nondimensional data normalized by dimensional reference quantities;

c) nondimensional data with associated nondimensional reference quantities;

d) nondimensional parameters (e.g., Reynolds number, pressure coefficient);

e) pure constants (e.g., π, e).

Each of the five classes of data requires different information to describe dimensional units or
normalization associated with the data.

Identifiers or names can be attached to data array entities to identify and describe the quantity
being stored. To facilitate communication between different application codes, a set of standard-
ized data-name identifiers with fairly precise definitions are provided. For any identifier in this
set, the associated data should be unambiguously understood. In essence, this schema supplies
standardized terminology for labeling CFD-related data, including grid coordinates, flow solu-
tion, turbulence model quantities, nondimensional governing parameters, boundary-condition
quantities, and forces and moments.
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Figure G.7 – Entity level diagram of ARM basis schema (page 1 of 5)

All standardized identifiers denote scalar quantities; this is consistent with the intended use of
the data array structure type to describe an array of scalars. For quantities that are vectors,
such as velocity, their components are listed.

Included with the lists of standard data-name identifiers, the fundamental units of dimensions
associated with that quantity are provided. The following notation is used for the fundamental
units: M is mass, L is length, T is time, Θ is temperature and α is angle. These fundamen-
tal units are directly associated with the elements of the dimensional exponents structure.
For example, a quantity that has dimensions ML/T corresponds to MassExponent = +1,
LengthExponent = +1, and TimeExponent = -1.

All quantities in the following subclauses denote REAL data types.

G.3.3 basis type definitions

G.3.3.1 label

label is an alphanumeric string which represents the human-interpretable name of something
and has a natural language meaning.

NOTE 1 This is the same as label in ISO 10303-41.
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STRING

data name

standard data name

coordinate data name

force moment data name

nondimensional data name

results.flow solution data name

conditions.Riemann 1D data name

equations.turbulence data name

2,1 (4)

Figure G.8 – Entity level diagram of ARM basis schema (page 2 of 5)

EXPRESS specification:

*)
TYPE label = STRING;
END_TYPE;
(*

G.3.3.2 textual

textual is a list of alphanumeric strings intended to be read and understood by a human being.
It is for information purposes only.

NOTE 1 Effectively, textual is a list of text as specified in ISO 10303-41.
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Figure G.9 – Entity level diagram of ARM basis schema (page 3 of 5)

EXPRESS specification:

*)
TYPE textual = LIST OF STRING;
END_TYPE;
(*

G.3.3.3 data class

data class is an enumeration type that identifies the class of a given piece of data.

NOTE 1 Data class is decribed in detail in ISO 10303-5w.
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Figure G.10 – Entity level diagram of ARM basis schema (page 4 of 5)

STRING geometry reference 1,2 textual

(ABS) cfd pdm GENERIC

file descriptions L

data

Figure G.11 – Entity level diagram of ARM basis schema (page 5 of 5)
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EXPRESS specification:

*)
TYPE data_class = EXTENSIBLE ENUMERATION OF ();
END_TYPE;
(*

G.3.3.4 mass units

An enumeration of units of mass. These include kilogram, gram, slug, and pound mass.

EXPRESS specification:

*)
TYPE mass_units = EXTENSIBLE ENUMERATION OF ();
END_TYPE;
(*

G.3.3.5 length units

An enumeration of units of length. These include meter, centimeter, millimeter, foot, and inch.

EXPRESS specification:

*)
TYPE length_units = EXTENSIBLE ENUMERATION OF ();
END_TYPE;
(*

G.3.3.6 time units

An enumeration of units of time. These include second.

EXPRESS specification:

*)
TYPE time_units = EXTENSIBLE ENUMERATION OF ();
END_TYPE;
(*

G.3.3.7 temperature units

An enumeration of units of temperature. These include Kelvin, Celsius, Rankine, and Fahren-
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heit.

EXPRESS specification:

*)
TYPE temperature_units = EXTENSIBLE ENUMERATION OF ();
END_TYPE;
(*

G.3.3.8 angle units

An enumeration of units of plane angle. These include degree and radian.

EXPRESS specification:

*)
TYPE angle_units = EXTENSIBLE ENUMERATION OF ();
END_TYPE;
(*

G.3.3.9 grid location

grid location is an enumeration of locations with respect to a grid.

NOTE 1 Grid locations are described in detail in ISO 10303-5w.

EXPRESS specification:

*)
TYPE grid_location = EXTENSIBLE ENUMERATION OF ();
END_TYPE;
(*

G.3.3.10 data name

data name is an identifier for the contents of a data array. It is a superset of standard -
data name and adhoc data name.

EXPRESS specification:

*)
TYPE data_name = SELECT
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(standard_data_name,
adhoc_data_name);

END_TYPE;
(*

G.3.3.11 adhoc data name

adhoc data name is a STRING providing a non-standard identifier for the contents of a data -
array.

EXPRESS specification:

*)
TYPE adhoc_data_name = STRING;
END_TYPE;
(*

G.3.3.12 standard data name

standard data name is a listing of standardized identifiers for the contents of a data array.

EXPRESS specification:

*)
TYPE standard_data_name = EXTENSIBLE SELECT

(coordinate_data_name,
nondimensional_data_name,
Riemann_1D_data_name,
turbulence_data_name,
flow_solution_data_name,
force_moment_data_name);

END_TYPE;
(*

G.3.3.13 coordinate data name

coordinate data name is an enumeration of standardized coordinate systems data. These
include cartesian, cylindrical, spherical, and auxiliary.

NOTE 1 Coordinate names are described in detail in ISO 10303-5w.

EXPRESS specification:

*)
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TYPE coordinate_data_name = EXTENSIBLE ENUMERATION OF ();
END_TYPE;
(*

G.3.3.14 nondimensional data name

nondimensional data name is an enumeration of standardized nondimensional parameters.

CFD codes are rich in nondimensional governing parameters, such as Mach number and Reynolds
number, and nondimensional flowfield coefficients, such as pressure coefficient. The problem with
these parameters is that their definitions and conditions that they are evaluated at can vary from
code to code. Reynolds number is particularly notorious in this respect.

These parameters have posed us with a difficult dilemma. Either we impose a rigid definition for
each and force all database users to abide by it, or we develop some methodology for describing
the particular definition that the user is employing. The first limits applicability and flexibility,
and the second adds complexity. We have opted for the second approach, but we include only
enough information about the definition of each parameter to allow for conversion operations.
For example, the Reynolds number includes velocity, length and kinematic viscosity scales in
its definition (i.e. Re = V L/ν). The database description of Reynolds number includes these
different scales. By providing these ‘definition components’, any code that reads Reynolds
number from the database can transform its value to an appropriate internal definition. These
‘definition components’ are identified by appending a ‘_’ to the data-name identifier of the
parameter.

Definitions for nondimensional flowfield coefficients follow: The pressure coefficient is defined
as,

cp =
p− pref
1
2ρrefq

2
ref
,

where 1
2ρrefq

2
ref is the dynamic pressure evaluated at some reference condition, and pref is some

reference pressure. The skin friction coefficient is,

~cf =
~τ

1
2ρrefq

2
ref
,

where ~τ is the shear stress or skin friction vector. Usually, ~τ is evaluated at the wall surface.

EXPRESS specification:

*)
TYPE nondimensional_data_name = EXTENSIBLE ENUMERATION OF ();
END_TYPE;
(*

The required identifiers and their meanings are given in Table 8.
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G.3.4 basis entity definitions

G.3.4.1 cfd pdm

cfd pdm is CFD administrative and Product Data Management data; it covers such aspects as
dates, responsiblities, status, approvals, etc.

EXPRESS specification:

*)
ENTITY cfd_pdm
ABSTRACT;
data : GENERIC;

END_ENTITY;
(*

Attribute definitions:

data: the administrative and PDM data.

G.3.4.2 array of data

array of data is a multidimensional array of data values.

EXPRESS specification:

*)
ENTITY array_of_data
ABSTRACT;
values : ARRAY OF GENERIC;

END_ENTITY;
(*

Attribute definitions:

values: the data values. These will normally be REAL but other simple types (e.g., INTEGER,
STRING) are possible.

G.3.4.3 data conversion

data conversion contains conversion factors for recovering raw dimensional data from given
nondimensional data.
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Given a nondimensional piece of data, Data(nondimensional), the conversion to ‘raw’ dimen-
sional form is:

Data(raw) = Data(nondimensional)*scale + offset

EXPRESS specification:

*)
ENTITY data_conversion;
scale : REAL;
offset : REAL;

END_ENTITY;
(*

Attribute definitions:

scale: The scaling factor.

offset: The offset.

G.3.4.4 dimensional units

dimensional units describes the system of units used to measure dimensional data.

EXPRESS specification:

*)
ENTITY dimensional_units;
mass : mass_units;
length : length_units;
time : time_units;
temperature : temperature_units;
angle : angle_units;

END_ENTITY;
(*

Attribute definitions:

mass: The unit of mass.

length: The unit of length.

time: The unit of time.

temperature: The unit of temperature.
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angle: The unit of plane angle.

G.3.4.5 dimensional exponents

dimensional exponents describes the dimensionality of data by specifying the exponents as-
sociated with each of the fundamental units of measure.

EXAMPLE 1 An instance of dimensional exponents that describes velocity is:

EXPRESS-I specification:

velocity = {mass -> 0.0;
length -> 1.0;
time -> -1.0;
temperature -> 0.0;
angle -> 0.0;};

EXPRESS specification:

*)
ENTITY dimensional_exponents;
mass : REAL;
length : REAL;
time : REAL;
temperature : REAL;
angle : REAL;

END_ENTITY;
(*

Attribute definitions:

mass: The dimensionality of units of mass.

length: The dimensionality of units of length.

time: The dimensionality of units of time.

temperature: The dimensionality of units of temperature.

angle: The dimensionality of units of angle.

G.3.4.6 index list

index list specifies a list of indices.
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EXPRESS specification:

*)
ENTITY index_list;
nindices : INTEGER;
indices : LIST [1:?] OF ARRAY [1:nindices] OF INTEGER;

END_ENTITY;
(*

Attribute definitions:

nindices: The number of indices required to reference a node.

indices: the list of indices.

G.3.4.7 index range

index range specifies the beginning and ending indices of a subrange.

EXPRESS specification:

*)
ENTITY index_range;
nindices : INTEGER;
start : ARRAY [1 : nindices] OF INTEGER;
finish : ARRAY [1 : nindices] OF INTEGER;
END_ENTITY;
(*

Attribute definitions:

nindices: The number of indices required to reference a node.

start: The indices of the minimal corner of the subrange;

finish: The indices of the maximal corner of the subrange.

G.3.4.8 data array

data array describes a multi-dimensional data array of a given type, dimensionality and size in
each dimension. The data may be dimensional, nondimensional or pure constants. Qualifiers are
provided to describe dimensional units or normalization information associated with the data.

The data type will usually be REAL but other simple data types are possible.
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This structure is formulated to describe an array of scalars. Therefore, for vector quantities
(e.g., a position vector or a velocity vector), seperate instances are required for each component
of the vector.

EXAMPLE 1 The cartesian coordinates of a 3-D grid are described by three separate data arrays: one
for x, one for y, and one for z.

The optional attributes of data array provide information for manipulating the data, including
changing units or normalization. Within a given instance of data array, the class of data and all
information required for manipulations may be completely and precisely specified by the values
of class, units, exponents and conversion. class identifies the class of data and governs the
manipulations that can be performed.

NOTE 1 Data array is described in detail in ISO 10303-5w.

EXPRESS specification:

*)
ENTITY data_array;
descriptions : OPTIONAL LIST OF textual;
id : label;
dimension : INTEGER;
sizes : ARRAY [1:dimension] OF INTEGER;
data : array_of_data;
classifier : OPTIONAL data_name;
units_class : OPTIONAL data_class;

END_ENTITY;

SUBTYPE_CONSTRAINT sc1_data_array FOR data_array;
ONEOF(dimensional_data_array,

nondimensional_data_array);
END_SUBTYPE_CONSTRAINT;
(*

Attribute definitions:

descriptions: is annotation;

id: User-specified instance identifier;

dimension: The number of dimensions in the multidimensional data array;

sizes: The array sizes for each dimension;

data: The data values;

classifier: An identifier or name that identifies and describes the quantity being stored;

units class: The class of data;
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G.3.4.9 dimensional data array

A dimensional data array is a data array holding data that is dimensional.

EXPRESS specification:

*)
ENTITY dimensional_data_array
SUBTYPE OF (data_array);
units : dimensional_units;
exponents : dimensional_exponents;
conversion : OPTIONAL data_conversion;

WHERE
wr1 : NOT EXISTS(SELF/data_array.units_class);

END_ENTITY;
(*

Attribute definitions:

units: The dimensional units of the data;

exponents: The dimensional exponents;

conversion: The normalization.

Formal propositions:

wr1: The (inherited) units class attribute shall have no value.

G.3.4.10 nondimensional data array

A nondimensional data array is a data array holding data that is not dimensional.

EXPRESS specification:

*)
ENTITY nondimensional_data_array
SUBTYPE OF (data_array);
SELF/data_array.units_class : data_class;

WHERE
wr1 : (units_class <> dimensional) AND

(units_class <> unspecified);
END_ENTITY;
(*
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Attribute definitions:

class: The class of data;

Formal propositions:

wr1: The value of the (inherited) units class shall not be either dimensional or unspecified.

G.3.4.11 rind

rind describes the number of rind planes associated with a data array containing grid coordi-
nates, flow solution data, or any other grid-related discrete data.

EXPRESS specification:

*)
ENTITY rind;
nindices : INTEGER;
planes : ARRAY [1:2*nindices] OF INTEGER;

END_ENTITY;
(*

Attribute definitions:

nindices: The number of indices required to reference a node.

planes: contains the number of rind planes attached to the minimum and maximum faces of a
zone. Further description is given in ISO 10303-5w.

G.3.4.12 geometry reference

Reference to a geometry data file.

EXPRESS specification:

*)
ENTITY geometry_reference;
descriptions : OPTIONAL LIST OF textual;
file : STRING;

END_ENTITY;
(*
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Attribute definitions:

descriptions: is annotation;

file: is the location of the file.

EXPRESS specification:

*)
END_SCHEMA; -- end of basis
(*

G.4 domain

The following EXPRESS declaration begins the domain schema and identifies the necessary
external references.

EXPRESS specification:

*)
SCHEMA domain;
REFERENCE FROM basis;
REFERENCE FROM hierarchy;

(*

G.4.1 Introduction

This schema defines and describes the structure types for describing the grid coordinates and
grid interfaces pertaining to a zone.

The graphical form for the domain schema is given in Figures G.17 through G.18.

G.4.2 Fundamental concepts and assumptions

A grid is defined by its vertices. In a 3–D structured grid, the volume is the ensemble of cells,
where each cell is the hexahedron region defined by eight nearest neighbor vertices. Each cell
is bounded by six faces, where each face is the quadrilateral made up of four vertices. An edge
links two nearest-neighbor vertices; a face is bounded by four edges.

In a 2–D structured grid, the notation is more ambiguous. Typically, the quadrilateral area
composed of four nearest-neighbor vertices is referred to as a cell. The sides of each cell, the line
linking two vertices, is either a face or an edge. In a 1–D grid, the line connecting two vertices
is a cell.
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Figure G.12 – Example convention for a 2-D cell center
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Figure G.13 – Example grid block with rind vertices

A structured-multiblock grid is composed of zones, where each zone includes all the vertices,
cells, faces and edges that constitute a grid block.

Indices describing a 3–D grid are ordered (i, j, k); (i, j) is used for 2–D and (i) for 1–D.

Cell centers, face centers, and edge centers are indexed by the minimum of the connecting
vertices.

EXAMPLE 1 For example a 2-D cell center (or face center on a 3-D grid) would have the conventions
shown in Figure G.12.

In addition, the default beginning vertex for a grid block is (1, 1, 1); this means the default
beginning cell center of a grid block is also (1, 1, 1).

A grid block may contain grid-coordinate or flow-solution data defined at a set of points outside
the block itself. These are referred to as ‘rind’ or ghost points and may be associated with
fictitious vertices or cell centers. They are distinguished from the vertices and cells making up
the grid block (including its boundary vertices), which are referred to as ‘core’ points.

EXAMPLE 2 Figure G.13 shows a 2–D grid block with a single row of ‘rind’ vertices at the minimum
and maximum i-faces. The grid size (i.e. the number of ‘core’ vertices in each direction) is 5×4. ‘Core’
vertices are designated by ‘•’, and ‘rind’ vertices by ‘×’. Default indexing is also shown for the vertices.

For a grid (or zone), the minimum faces in each coordinate direction are denoted i-min, j-min
and k-min; the maximum faces are denoted i-max, j-max and k-max. These are the minimum
and maximum ‘core’ faces.
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Figure G.14 – A 1-to-1 abutting interface
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• left-zone vertices on interface
× left-zone face-centers on interface

Figure G.15 – A mismatched abutting interface

EXAMPLE 3 i−min is the face or grid plane whose core vertices have minimum i index (which if using
default indexing is 1).

Figures G.14 to Figure G.16 show three types of multiblock interfaces.

Figure G.14 illustrates a 1-to-1 abutting interface, also referred to as matching or C0 continuous.
The interface is a plane of vertices that are physically coincident (i.e., they have identical coor-
dinate values) between the adjacent zones; grid-coordinate lines perpendicular to the interface
are continuous from one zone to the next. In 3-D, a 1-to-1 abutting interface is always a logically
rectangular region.

The second type of interface, is mismatched abutting, where two zones touch but do not overlap
(except for vertices and cell faces on the grid plane of the interface). Vertices on the interface
may not be physically concident between the two zones. Figure G.15 indentifies the vertices
and face centers of the left zone that lie on the interface. In 3-D, the vertices of a zone that
constitute an interface patch may not form a logically rectangular.

The third type of multiblock interface is called overset and occurs when two zones overlap; in
3-D, the overlap is a 3-D region. For overset interfaces, one of the two zones takes recedence
over the other; this establishes which solution in the overlap region to retain and which one to
discard. The region in a given zone where the solution is discarded is called an overset hole and
the grid points outlining the hole are called fringe points.
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Figure G.16 – An overset interface

Figure G.16 depicts an overlap region between two zones, where the right zone takes precedence
over the left zone. The points identified in Figure G.16 are the fringe points and overset-hole
points for the left zone. In addition, for the zone taking precedence, any bounding points (i.e.,
vertices on the bounding faces) of the zone that lies within the overlap must also be identified.

Overset interfaces may include multiple layers of fringe points outlining holes and at zone bound-
aries.

For the mismatched abutting and overset interfaces in Figure G.15 and Figure G.16, the left
zone plays the role of receiver zone and the right plays the role of donor zone.

G.4.3 domain entity definitions

G.4.3.1 grid coordinates

The physical coordinates of the grid vertices in a zone are described by the grid coordinates
structure. The structure contains a list for the data arrays of the individual components of the
position vector. It also provides a mechanism for identifying rind-point data included within
the position-vector arrays.

EXPRESS specification:

*)
ENTITY grid_coordinates;
descriptions : OPTIONAL LIST OF textual;
rind : OPTIONAL rind;
data : OPTIONAL LIST OF data_array;
dclass : OPTIONAL data_class;
dimunits : OPTIONAL dimensional_units;
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Figure G.17 – Entity level diagram of ARM domain schema (page 1 of 2)
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Figure G.18 – Entity level diagram of ARM domain schema (page 2 of 2)
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DERIVE
nindices : INTEGER := zone.nindices;
class : data_class := NVL(dclass, zone.class);
units : dimensional_units := NVL(dimunits, zone.units);
vertex_count : ARRAY [1:nindices] OF INTEGER := zone.vertex_count;

INVERSE
zone : zone FOR coordinates;

END_ENTITY;
(*

Attribute definitions:

descriptions: is annotations;

rind: is optional. If not given then this is equivalent to a rind structure whose planes array
contains all zeros.

data: is the grid-coordinate data; each data array shall contain a single component of the
position vector (e.g., three structures are required for 3-D data, one for each coordinate value).

dclass: non-default data class;

dimunits: non-default system of units;

nindices: The number of indices required to reference a node.

class: is the default class for data contained in data array.

units: describes the system of units employed.

vertex count: is the number of vertices, excluding rind points, in each index direction

zone: is the calling zone.

Informal propositions:

ip1: The nindices of rind shall match the grid coordinates nindices.

ip2: Grid coordinates for an unstructured zone shall not have a value for rind, as it is mean-
ingless in this case.

ip3: The data shall be consistent.

G.4.3.2 zone grid connectivity

All multiblock interface grid connectivity interface information pertaining to a given zone is
contained in the zone grid connectivity structure. This includes abutting interfaces (general
mismatched and 1-to-1), overset-grid interfaces, and overset-grid holes.
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EXPRESS specification:

*)
ENTITY zone_grid_connectivity;
descriptions : OPTIONAL LIST OF textual;
connectivities : LIST OF connectivity;

DERIVE
nindices : INTEGER := zone.nindices;
cell_dimension : INTEGER := zone.cell_dimension;

INVERSE
zone : zone FOR grid_connectivity;

END_ENTITY;
(*

Attribute definitions:

descriptions: is annotation;

connectivities: is the connectivity information;

nindices: The number of indices required to reference a node.

cell dimension: is the dimension of a cell in the mesh.

zone: is the zone.

G.4.3.3 connectivity

Information specifying the connectivity of a multiblock interface.

All the interface patches for a given zone are contained in the zone grid connectivity entity for
that zone. If a face of a zone touches several other zones (say N), the N different instances of the
connectivity structure must be included in the zone to describe each interface patch.

NOTE 1 This convention requires that a single interface patch be described twice in the database —
once for each adjacent zone. It also means that the database is symmetrical with regard to interface
patches.

NOTE 2 Connectivity is described in detail in ISO 10303-5w.

EXPRESS specification:

*)
ENTITY connectivity;
descriptions : OPTIONAL LIST OF textual;

DERIVE
nindices : INTEGER := zone.nindices;
cell_dimension : INTEGER := zone.cell_dimension;
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INVERSE
zone : zone_grid_connectivity FOR connectivities;

END_ENTITY;

SUBTYPE_CONSTRAINT sc1_connectivity FOR connectivity;
ABSTRACT SUPERTYPE;

-- ONEOF(grid_connectivity_1to1,
-- grid_connectivity,
-- overset_holes);
END_SUBTYPE_CONSTRAINT;
(*

Attribute definitions:

descriptions: is annotation;

nindices: The number of indices required to reference a node.

cell dimension: Dimension of a cell in the mesh.

zone: is the calling zone grid connectivity.

EXPRESS specification:

*)
END_SCHEMA; -- end of domain
(*

G.5 conditions

The following EXPRESS declaration begins the conditions schema and identifies the necessary
external references.

EXPRESS specification:

*)
SCHEMA conditions;
REFERENCE FROM basis;
REFERENCE FROM hierarchy;
REFERENCE FROM domain (elements);

(*

G.5.1 Introduction

This schema defines and describes the boundary-condition specifications within Navier-Stokes
codes.
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The graphical form for the conditions schema is given in Figures G.20 through G.27.

G.5.2 Fundamental concepts and assumptions

This model is an attempt to unify boundary-condition specifications within Navier-Stokes codes.
The structures and conventions presented are a compromise between simplicity and generality.

The difficulty with boundary-conditions is that there is such a wide variety used, and even a single
boundary-condition equation is often implemented differently in different codes. Some boundary-
conditions, such as a symmetry plane, are fairly well defined. Other boundary-conditions are
much looser in their definition and implementation. An inflow boundary is such an example. It
is generally accepted how many solution quantities should be specified at an inflow boundary
(from mathematical well-posedness arguments), but what those quantities are will change with
the class of flow problems (e.g., internal flows vs. external flows), and they will also change from
code to code.

An additional difficulty for CFD analysis is that in some situations different boundary-condition
equations are applied depending on local flow conditions. Any boundary where the flow can
change from inflow to outflow or supersonic to subsonic is a candidate for flow-dependent
boundary-condition equations.

These difficulties have moulded the design of the boundary-condition structures and conventions.
Boundary-condition types are defined (bc type simple, bc type compound, and bc type)
that establish the equations to be enforced. However, for those more loosely defined boundary-
conditions, such as inflow/outlow, the boundary-condition type merely establishes general guide-
lines on the equations to be imposed. Augmenting (and superseding) the information provided by
the boundary-condition type is precisely defined boundary-condition solution data. Data-name
conventions (data name) are used to identify the exact quantities involved in the boundary-
conditions.

One flexibility that is provided by this approach is that boundary-condition information can
easily be built during the course of analysis. For example, during grid-generation phases minimal
information (e.g., the boundary-condition type) may be given. Then, prior to running of the
flow solver, more specific boundary-condition information, such as Dirichlet or Neumann data,
may be added.

An additional flexibility proved by the structures is that both uniform and non-uniform boundary-
condition data can be described within the same framework.

Boundary-conditions are classified as either fixed or flow-dependent. Fixed boundary-conditions
enforce a given set of boundary-condition equations regardless of flow conditions; flow-dependent
boundary-conditions enforce different sets of boundary-condition equations depending on local
flow conditions. Both fixed and flow-dependent boundary-conditions are incorporated into a
uniform framework, which allows all boundary-conditions to be described in a similar manner.

Figure G.19 depicts the hierarchy used for prescribing a single boundary-condition. Each
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Figure G.19 – Hierarchy for boundary-condition structures

boundary-condition includes a type that describes the general equations to enforce, a patch
specification, and a collection of data sets. The minimum required information for any boundary-
condition is the patch specification and the boundary-condition type. This minimum information
is similar to that used in many existing flow solvers.

Generality in prescribing equations to enforce and their associated boundary-condition data is
provided in the optional data sets. Each data set contains all boundary-condition data required
for a given fixed or simple boundary-condition. Each data set is also tagged with a boundary-
condition type. For fixed boundary-conditions, the hierarchical tree contains a single data set,
and the two boundary-condition types shown in Figure G.19 are identical. Flow-dependent or
compound boundary-conditions contain multiple data sets, each to be applied seperately de-
pending on local flow conditions. The compound boundary-condition type describes the general
flow-dependent boundary-conditions, and each data set contains associated simple boundary-
condition types. For example, a farfiled boundary condition would contain for data sets, where
each applies to the different combinations of subsonic and supersonic inflow and outflow.

Within a single data set, boundary-condition data is grouped by equation type into Dirichlet and
Neumann data. The lower leaves of Figure G.19 show data for generic flow-solution quantities
α and β to be applied in Dirichlet conditions, and data for γ and δ to be applied in Neumann
boundary-conditions. data array entities are employed to store these data and to identify the
specific flow variables they are associated with.

In situations where the data sets (or any information contained therein) are absent from a
given boundary-condition hierarchy, flow solvers are free to impose any appropriate boundary-
conditions. Although not pictured in Figure G.19, it is also possible to specify the reference
state from which the flow solver should extract the boundary-condition data.

c©ISO 2000 — All rights reserved 131



ISO/WD 10303-2fd:2000(E) Nxxxx

basis.textual (ABS) conditions

7,1 integral data

6,1 reference state

5,1 bc data

4,1 bc data set

3,1 bc

2,1 zone bc

basis.label
descriptions L id

1

Figure G.20 – Entity level diagram of ARM conditions schema (page 1 of 8)

G.5.3 conditions type definitions

G.5.3.1 Riemann 1D data name

Riemann 1D data name is an enumeration of standardized Riemann data for 1-D flow.

Boundary condition specification for inflow/outflow or farfield boundaries often involves Rie-
mann invariants or characteristics of the linearized inviscid flow equations. For an ideal com-
pressible gas, these are typically defined as follows: Riemann invariants for an isentropic 1–D
flow are, [

∂

∂t
+ (u± c)

∂

∂x

](
u± 2

γ − 1
c

)
= 0.

Characteristic variables for the 3–D Euler equations linearized about a constant mean flow are,[
∂

∂t
+ Λ̄n

∂

∂x

]
W ′

n(x, t) = 0, n = 1, 2, . . . 5,

where the characteristics and corresponding characteristic variables are
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Figure G.21 – Entity level diagram of ARM conditions schema (page 2 of 8)
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INTEGER

basis.dimensional units
8,3 family

basis.data class hierarchy.element

6,3 reference state basis.index list

4,2 bc data set
basis.index range

INTEGER 8,1 bc type

3,2 (2)
basis.grid location

bc

3,1 (1)

(DER) units
dimunits

(DER) class
dclass

(DER) refstate
rstate

data sets L

(DER) physical dimension

(DER) nindices

inward normal index A[1:?]

(INV) zone

vertex list length

face center list length

family name

elements L

element list

point list

inward normal list

element range
point range

the type

(DER) location
gridloc

Figure G.22 – Entity level diagram of ARM conditions schema (page 3 of 8)
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Figure G.23 – Entity level diagram of ARM conditions schema (page 4 of 8)
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Figure G.24 – Entity level diagram of ARM conditions schema (page 5 of 8)
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Figure G.25 – Entity level diagram of ARM conditions schema (page 6 of 8)
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Figure G.26 – Entity level diagram of ARM conditions schema (page 7 of 8)
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8,2 (4) bc type simple bc type compound

bc type8,1 (3)

basis.textual
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conditions L

descriptions L

id
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Figure G.27 – Entity level diagram of ARM conditions schema (page 8 of 8)

Characteristic Λ̄n W ′
n

‘entropy’ ū p′ − ρ′/c̄2

‘vorticity’ ū v′

‘vorticity’ ū w′

‘acoustic’ ū± c̄ p′ ± u′/(ρ̄c̄)

Barred quantities are evaluated at the mean flow, and primed quantities are linearized pertur-
bations. The only non-zero mean-flow velocity component is ū.

EXPRESS specification:

*)
TYPE Riemann_1D_data_name = EXTENSIBLE ENUMERATION OF ();
END_TYPE;
(*

The required identifiers and their meanings are given in Table 9.

G.5.3.2 bc type

Boundary-condition types identify the equations that should be enforced at a given boundary
location. The boundary-condition types are described by bc type. Some members of bc type
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completely identify the equations to impose, while others identify a general description of the
class of boundary-condition equations to impose.

bc type is subdivided into two enumeration types: bc type simple and bc type compound
which identify the simple and compound boundary-condition types respectively.

The subdivision of bc type is based on function. For simple boundary-conditions, the equations
and data are fixed; whereas, for compound boundary-conditions different sets of equations are
imposed depending on local flow conditions at the boundary.

bc type is a superset of bc type simple and bc type compound. It identifies the boundary-
condition (simple or compound) at a boundary location.

For inflow/outflow boundary-condition descriptions, 3-D inviscid compressible flow is assumed;
the 2-D equivalent should be obvious. These same boundary-conditions are typically used for
viscous cases also. This ‘3-D Euler’ assumption will be noted wherever used.

EXPRESS specification:

*)
TYPE bc_type = SELECT

(bc_type_simple,
bc_type_compound);

END_TYPE;
(*

G.5.3.3 bc type simple

bc type simple is an enumeration type that identifies the simple boundary-condition at a
boundary location.

In the descriptions below, Q is the solution vector, ~q is the velocity vector whose magnitude is
q, the unit normal to the boundary is n̂, and ∂()/∂n = n̂ · ∇ is differentiation normal to the
boundary.

EXPRESS specification:

*)
TYPE bc_type_simple = ENUMERATION OF

(unspecified,
user_defined,
bc_general,
bc_Dirichlet,
bc_Neumann,
bc_extrapolate,
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bc_wall_inviscid,
bc_wall_viscous_heat_flux,
bc_wall_viscous_isothermal,
bc_wall_viscous,
bc_wall,
bc_inflow_subsonic,
bc_inflow_supersonic,
bc_outflow_subsonic,
bc_outflow_supersonic,
bc_tunnel_inflow,
bc_tunnel_outflow,
bc_degenerate_line,
bc_degenerate_point,
bc_symmetry_plane,
bc_symmetry_polar,
bc_axissymmetric_wedge);

END_TYPE;
(*

Enumerated item definitions:

unspecified: condition is unspecified;

user defined: condition is specified via an external agreement between the data creator and
the data user;

bc general: arbitrary conditions on Q or ∂Q/∂n;

bc Dirichlet: Dirichlet condition on Q vector;

bc Neumann: Neumann condition on ∂Q/∂n;

bc extrapolate: extrapolate Q from interior;

bc wall inviscid: inviscid (slip) wall

— normal velocity specified (default: ~q · n̂ = 0)

bc wall viscous heat flux: viscous no-slip wall with heat flux

— velocity Dirichlet (default: q = 0)

— temperature Neumann (default: adiabatic, ∂T/∂n = 0)

bc wall viscous isothermal: viscous no-slip, isothermal wall

— velocity Dirichlet (default: q = 0)

— temperature Dirichlet

bc wall viscous: viscous no-slip wall; special cases are bc wall viscous heat flux and bc -
wall viscous isothermal.
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— velocity Dirichlet (default: q = 0)

— Dirichlet or Neumann on temperature

bc wall: general wall condition; special cases are bc wall inviscid, bc wall viscous, bc -
wall viscous heat flux, and bc wall viscous isothermal

bc inflow subsonic: inflow with subsonic normal velocity

— specify 4; extrapolate 1 (3-D Euler)

bc inflow supersonic: inflow with supersonic normal velocity

— specify 5; extrapolate 0 (3-D Euler)

same as bc Dirichlet

bc outflow subsonic: outflow with subsonic normal velocity

— specify 1; extrapolate 0 (3-D Euler)

bc outflow supersonic: outflow with supersonic normal velocity

— specify 0; extrapolate 5 (3-D Euler)

same as bc Extrapolate

bc tunnel inflow: tunnel inlet (subsonic normal velocity)

— specify cross-flow velocity, stagnation enthalpy, entropy

— extrapolate 1 (3-D Euler)

bc tunnel outflow: tunnel exit (subsonic normal velocity)

— specify static pressure

— extrapolate 4 (3-D Euler)

bc degenerate line: face degenerated to a line;

bc degenerate point: face degenerated to a point;

bc symmetry Plane: symmetry plane; face should be coplanar

— density, pressure: ∂()/∂n = 0

— tangential velocity: ∂(~q × n̂)/∂n = 0

— normal velocity: ~q · n̂ = 0

bc symmetry polar: polar-coordinate singularity line; special case of bc degenerate line
where degenerate face is a straight line and flowfield has polar symmetry; ŝ is singularity line
tangential unit vector
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— normal velocity: ~q × ŝ = 0

— all others: ∂()/∂n = 0, n normal to ŝ

bc axissymmetric wedge: axisymmetric wedge; special case of bc degenerate line where
degenerate face is a straight line

G.5.3.4 bc type compound

bc type compound is an enumeration type that identifies the compound boundary-condition
at a boundary location.

EXPRESS specification:

*)
TYPE bc_type_compound = ENUMERATION OF

(unspecified,
user_defined,
bc_inflow,
bc_outflow,
bc_farfield);

END_TYPE;
(*

Enumerated item definitions:

unspecified: condition is unspecified;

user defined: condition is specified via an external agreement between the data creator and
the data user;

bc inflow: inflow, arbitrary normal Mach
test on normal Mach, then perform one of: bc inflow subsonic, bc inflow supersonic;

bc outflow: outflow, arbitrary normal Mach
test on normal Mach, then perform one of: bc outflow subsonic, bc outflow supersonic;

bc farfield: farfield inflow/outflow, arbitrary normal Mach
test on normal velocity and normal Mach, then perform one of: bc inflow subsonic, bc -
inflow supersonic, bc outflow subsonic, bc outflow supersonic.

G.5.4 conditions entity definitions

G.5.4.1 condition

A condition represents the concept of conditions or constraints pertinent to to an analysis.
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EXPRESS specification:

*)
ENTITY condition;
descriptions : OPTIONAL LIST OF textual;
id : label;

END_ENTITY;

SUBTYPE_CONSTRAINT sc1_condition FOR condition;
ABSTRACT SUPERTYPE;
ONEOF(zone_bc,

bc,
bc_data_set,
bc_data,
reference_state,
integral_data);

END_SUBTYPE_CONSTRAINT;
(*

Attribute definitions:

descriptions: is annotations;

id: User-specified instance identifier;

G.5.4.2 zone bc

All boundary-condition information pertaining to a given zone is contained in the zone bc
structure.

EXPRESS specification:

*)
ENTITY zone_bc
SUBTYPE OF (condition);
conditions : OPTIONAL LIST OF bc;
rstate : OPTIONAL reference_state;
dclass : OPTIONAL data_class;
dimunits : OPTIONAL dimensional_units;

DERIVE
nindices : INTEGER := zone.nindices;
physical_dimension : INTEGER := zone.physical_dimension;
class : data_class := NVL(dclass, zone.class);
units : dimensional_units := NVL(dimunits, zone.units);
refstate : reference_state := NVL(rstate, zone.refstate);

INVERSE
zone : zone FOR conditions;
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END_ENTITY;
(*

Attribute definitions:

conditions: is the boundary-conditions for a zone, on a patch by patch basis. Boundary-
condition information for a single patch is contained in the bc structure. If a zone contains N
boundary-condition patches, then N seperate instances of bc shall be provided in the zone bc
entity for the zone.

rstate: non-default reference data;

dclass: non-default data class;

dimunits: non-default dimensional units;

nindices: The number of indices required to reference a node.

physical dimension: The number of coordinates required to define a node position.

refstate: is reference data applicable to all the boundary-condition of the zone. Reference state
data is useful for situations where boundary-condition data is not provided, and flow solvers are
free to enforce any appropriate boundary-condition equations.

EXAMPLE 1 An engine nozzle exit boundary-condition usually imposes a stagnation pressure (or some
other stagnation quantity) different from freestream. The nozzle-exit stagnation quantities could be
specified by refstate at this level or below in lieu of providing explicit Dirichlet or Neumman data.

class: is the zonal default for the class of data contained in the zone’s boundary-conditions.

units: is the system of dimensional units.

zone: is the zone.

G.5.4.3 bc

bc contains boundary-condition information for a single BC surface patch of a zone. A BC
patch is the subrange of the face of a zone where a given boundary-condition is applied.

The structure contains a boundary-condition type, as well as one or more sets of boundary-
condition data that are used to define the boundary-condition equations to be enforced on the
BC patch. For most boundary-conditions, a single data set is all that is needed. The structure
also contains information describing the normal vector to the BC surface patch.

EXPRESS specification:

*)
ENTITY bc
SUBTYPE OF (condition);
the_type : bc_type;
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gridloc : OPTIONAL grid_location;
point_range : OPTIONAL index_range;
point_list : OPTIONAL index_list;
elements : OPTIONAL LIST OF elements;
element_range : OPTIONAL index_range;
element_list : OPTIONAL index_list;
inward_normal_index : OPTIONAL ARRAY [1:nindices] OF INTEGER;
inward_normal_list : OPTIONAL index_list;
data_sets : OPTIONAL LIST OF bc_data_set;
family_name : OPTIONAL family;
rstate : OPTIONAL reference_state;
dclass : OPTIONAL data_class;
dimunits : OPTIONAL dimensional_units;
vertex_list_length : INTEGER;
face_center_list_length : OPTIONAL INTEGER;

DERIVE
nindices : INTEGER := zone.nindices;
physical_dimension : INTEGER := zone.physical_dimension;
location : grid_location := NVL(gridloc, vertex);
refstate : reference_state := NVL(refstate, zone.refstate);
class : data_class := NVL(dclass, zone.class);
units : dimensional_units := NVL(dimunits, zone.units);

INVERSE
zone : zone_bc FOR conditions;

END_ENTITY;
(*

Attribute definitions:

the type: is the type of the boundary-condition;

gridloc: is non-default location information;

location: is the location of the conditions, which are either at the cell vertices or on the cell
faces.

point range: is a face subrange (i.e., points in a single computational plane); by convention
the indices refer to vertices;

point list: is a face subrange (i.e., points in a single computational plane); by convention the
indices refer to vertices;

elements: is the elements;

element range: is an element subrange;

element list: is the element indices;

inward normal index: shall have only one non-zero element, whose sign indicates the computational-
coordinate direction of the BC patch normal; this normal points into the interior of the zone.

Some boundary-conditions require a normal direction to be specified in order to be properly
imposed. A computational-coordinate normal can be derived from point range or point -
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Table G.1 – inward normal index values

Face Value Face Value
i-min [+1, 0, 0] i-max [−1, 0, 0]
j-min [0,+1, 0] j-max [0,−1, 0]
k-min [0, 0,+1] k-max [0, 0,−1]

list by examining redundant index components. Alternatively, this information can be provided
directly by inward normal index. For exterior faces of a zone in 3-D, inward normal index
takes one of the values given in Table G.1.

inward normal list: is a list of vectors normal to the BC patch pointing into the interior of
the zone; the vectors are not required to be unit vectors. By convention the vectors are located
at the vertices of the BC patch.

The physical-space normal vectors of the BC patch may be described by inward normal list;
these are located at vertices, consistent with point range and point list. inward normal -
list is specified as an optional attribute because it is not always needed to enforce boundary-
conditions, and the physical-space normals of a BC patch can usually be constructed from
the grid. However, there are some situations, such as grid-coordinate singularity lines, where
inward normal list becomes a required attribute because the normals cannot be generated
from other information.

data sets: is a list of boundary-condition data sets. In general, the proper bc data set in-
stance(s) to impose on the BC patch is determined by the value of the type.

For a few boundary-conditions, such as a symmetry plane or polar singularity, the value of
the type completely describes the equations to impose, and no instances of bc data set are
needed. For ‘simple’ boundary-conditions, where a single set of Dirichlet and/or Neumann data
is applied a single bc data set will likely be used (althought this is not a requirement). For
‘compound’ boundary-conditions, where the equations to impose are dependent on local flow
conditions, several instances of bc data set will likely be used.

refstate: non-default reference data;

dclass: non-default data class;

dimunits: non-default dimensional units;

refstate: is reference data applicable to the conditions of the BC patch.

class: is the class of data;

units: is the system of units;

nindices: The number of indices required to reference a node.

physical dimension: The number of coordinates required to define a node position.

vertex list length: is the number of vertices making up the BC patch. If point range is
specified, then the value may be determined from the number of grid points (inclusive) between
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the beginning and ending indices of point range. If point list is specified then the value is a
user input. vertex list length is also the number of elements in the list inward normal list.

face center list length: is the number of cell faces making up the BC patch. If point range
has a value, then the value of face center list length can be easily determined. If the BC
patch is not logically rectangular (i.e., if point list is specified), then the value of face center -
list length cannot be determined and has to be a user input.

zone: is the calling zone bc.

Informal propositions:

ip1: One and only one of the following attributes shall have a value: point range, point list,
elements, element range, element list.

ip2: If point range has a value it shall have the given value for dimension.

ip3: If point list has a value, then it shall have the given value of dimension.

ip4: If inward normal list has a value, then it shall have the given value of dimension.

ip5: inward normal index shall have a single nonzero entry;

ip6: If point range and inward normal list are specified, then a an ordering convention is
needed for indices on the BC patch. An ordering convention is also needed if point range is
specified and local data is present in the bc data set substructures. FORTRAN multidimen-
sional array ordering shall be used.

G.5.4.4 family

EXPRESS specification:

*)
ENTITY family;
descriptions : OPTIONAL LIST OF textual;
id : label;
conditions : OPTIONAL LIST OF bc_type;
geometry : OPTIONAL LIST OF geometry_reference;

END_ENTITY;
(*

Attribute definitions:

descriptions: is annotation;

id: User-specified instance identifier;

conditions: the family’s boundary conditions;

geometry: the family’s geometric information;
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G.5.4.5 bc data set

bc data set contains Dirichlet and Neumann data for a single set of boundary-condition equa-
tions. Its intended use is for simple boundary-condition types, where the equations imposed do
not depend on local flow conditions.

Boundary-condition data is seperated by equation type into Dirichlet and Neumann condi-
tions. Dirichlet boundary-conditions impose the value of the given variables, whereas Neumann
boundary-conditions impose the normal derivative of the given variables.

The bc structure (clause G.5.4.3) allows for an arbitrary list of boundary-condition data sets,
described by the bc data set structure. For simple boundary-conditions, a single data set
must be chosen from a list that may contain more than one element. Likewise, for a compound
boundary-condition, a limited number of data sets must be chosen and applied appropriately.
The mechanism for proper choice of data sets is controlled by the the type attribute of the bc
structure, the the type attribute of the bc data set structure, and the boundary-condition
type association table (Table G.2).

bc is used for both simple and compound boundary-conditions; hence, the attribute bc.the -
type is of type bc type. Conversely, the structure bc data set is intended to enforce a single
set of boundary-condition equations independent of local flow conditions (i.e., it is appropriate
only for simple boundary-conditions). That is why the attribute bc data set.simple type is
of type bc type simple and not bc type. The appropriate choice of data sets is determined
by matching the value of bc.the type with the value of bc data set.simple type as specified
in Table G.2.

Although the model has a strict division between the two categories of boundary-condition
types, in practice some overlap may exist. For example, some of the more general boundary-
condition types, such as bc wall, may include a situation of inflow/outflow (for instance if the
wall is porous). These complications require further guidelines on appropriate definition and
use of boundary-condition types. The real distinctions between bc type simple and bc type -
compound are as follows:

— bc type simple identifiers always match themselves; bc type compound never match
themselves.

— bc type simple identifiers always produce a single match; bc type compound produce
multiple matches.

— The usage rule for bc type simple identifiers is always trivial — apply the single matching
data set regardless of local flow conditions.

Therefore, any boundary-condition that involves application of different data sets depending on
local flow conditions should be classified as bc type compound.

NOTE 1 If a type that is classified bc type simple is desired to be used as a compound (bc wall
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Table G.2 – Associated boundary-condition types and usage rules

bc type Identifier Associated bc type simple identifiers and usage
rules

bc inflow bc inflow supersonic
bc inflow subsonic
usage rule:
if supersonic normal Mach, choose bc inflow super-
sonic,
else choose bc inflow subsonic.

bc Outflow bc outflow supersonic
bc outflow subsonic
usage rule:
if supersonic normal Mach, choose bc outflow super-
sonic,
else choose bc outflow subsonic.

bc farfield bc inflow supersonic
bc inflow subsonic
bc outflow supersonic
bc outflow subsonic
usage rule:
if inflow and supersonic normal Mach, choose bc inflow -
supersonic,
else if inflow, choose bc inflow subsonic,
else if outflow and supersonic normal Mach, choose bc -
outflow supersonic,
else, choose bc outflow subsonic.

bc inflow supersonic bc inflow supersonic
bc Dirichlet
usage rule:
choose either; bc inflow supersonic takes precedence.

bc outflow supersonic bc outflow supersonic
bc Extrapolate
usage rule:
choose either; bc outflow supersonic takes precedence.

all others self-matching
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for a porous wall is an example), then it should somehow be reclassified. One option is to define a new
bc type compound identifier and provide associated bc type simple types and a usage rule. Another
option may be to allow some identifiers to be both bc type simple and bc type compound and let
their appropriate use be based on context. This is still evolving.

For a given simple boundary-condition (i.e., one that is not dependent on flow conditions), the
database provides a set of boundary-condition equations to be enforced through the definitions
of bc data set and bc data. Apart from the boundary-condition type, the precise equations
to be enforced are described by boundary-condition solution data. These specified solution data
are arranged by ‘equation type’:

Dirichlet: Q = (Q)specified
Neumann: ∂Q/∂n = (∂Q/∂n)specified

The Dirichlet data and Neumann data attributes (of type bc data) list both the solution
variables involved in the variables (through the data-name conventions of clause G.3.3.12) and
the specified solution data.

Two issues need to be addressed for specifying Dirichlet or Neumann boundary-condition data.
The first is whether the data is global or local.

NOTE 2

global BC data: data applied globally to the BC patch; for example, specifying a uniform total
pressure at an inflow boundary.

local BC data: data applied at each grid point of the BC patch; an example of this is varying
total pressure specified at each vertex of the BC patch.

The second issue is describing the actual solution quantities that are to be specified. Both of
these issues are addressed by use of the data array structure.

For some types of boundary-conditions, many different combinations of solution quantities could
be specified. For example, bc inflow subsonic requires four solution quantities to be specified
in 3-D, but what those four quantities are varies with applications (e.g., internal versus external
flows) and codes. The actual data being specified for any bc type is given by the list of data -
array instances included in the Dirichlet data and Neumann data attributes (actually by
the identifier attached to each instance of data array). This reduces the potential problem of
having to specify many versions of a given bc type (e.g., bc inflow subsonic1, bc inflow -
subsonic2 etc.), where each has a precisely defined set of Dirichlet data. Instead, only the
number of Dirichlet or Neumann quantities must be provided for each bc type.

The global versus local issue can easily be handled by storing a scalar for the global BC data
case, and storing an array for the local BC data case.

By convention, if the Dirichlet data and Neumann data are not present in an instance of
bc data set, then application codes (e.g., flow solvers) are free to enforce appropriate boundary-
conditions for the given type of bc type simple. Furthermore, if insufficient data is present
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(e.g., only one Dirichlet variable is present for a subsonic inflow condition), then application
codes are free to fill out the boundary-condition data as appropriate for the bc type simple
identifier.

To facilitate implementation of boundary-conditions into existing flow solvers, if no boundary-
condition data is specified, then flow solvers are free to enforce any appropriate boundary-
condition equations. This includes situations where instances of bc data set, bc data or
data array are absent within the boundary-condition hierarchy. In this case the reference -
state specifies the reference-state conditions from which the flow solver should extract the
boundary-condition data. Within the boundary-condition hierarchy, reference state instances
may be present at any of the zone bc, bc or bc data set levels with the lowest taking prece-
dence.

EXPRESS specification:

*)
ENTITY bc_data_set
SUBTYPE OF (condition);
simple_type : bc_type_simple;
gridloc : OPTIONAL grid_location;
Dirichlet_data : OPTIONAL bc_data;
Neumann_data : OPTIONAL bc_data;
rstate : OPTIONAL reference_state;
dclass : OPTIONAL data_class;
dimunits : OPTIONAL dimensional_units;

DERIVE
location : grid_location := NVL(gridloc, vertex);
refstate : reference_state := NVL(rstate, bc.refstate);
class : data_class := NVL(dclass, bc.class);
units : dimensional_units := NVL(dimunits, bc.units);
vertex_list_length : INTEGER := bc.vertex_list_length;
face_center_list_length : INTEGER := bc.face_center_list_length;
data_array_length : INTEGER := bcdataset_data_array_length(SELF);

INVERSE
bc : bc FOR data_sets;

END_ENTITY;
(*

Attribute definitions:

simple type: is the boundary-condition type, which gives general information on the boundary-
condition equations to be enforced.

gridloc: is non-default location information;

location: is the location of local data arrays (if any) provided in Dirichlet data and Neu-
mann data. Local boundary-condition data may be defined either at vertices or boundary face
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centers.

Dirichlet data: is boundary-condition data for Dirichlet conditions which may be constant
over the BC patch or defined locally at each point of the patch.

Neumann data: is boundary-condition data for Neumann conditions which may be constant
over the BC patch or defined locally at each point of the patch.

rstate: non-default reference data;

dclass: non-default data class;

dimunits: non-default dimensional units;

refstate: is reference quantities applicable to the set of boundary-condition data.

class: is the class of data contained in the boundary-condition data.

units: is the system of units employed.

vertex list length: is the number of vertices in the BC patch.

face center list length: is the number of cell faces in the BC patch.

data array length: is the length of the data arrays.

bc: is the calling bc.

G.5.4.6 bc data

bc data contains a list of variables and associated data for boundary-condition specification.
Each variable may be given as global data (i.e., a scalar) or local data defined at each grid point
of the BC patch. By convention all data specified in a given instance of bc data is to be used
in the same type of boundary-condition equation.

EXAMPLE 1 The Dirichlet and Neumann conditions in bc data set use seperate bc data structures.

This structure allows a given instance of bc data to have a mixture of global and local data.

EXAMPLE 2 If the Dirichlet condition consists of a uniform stagnation pressure but with with a non-
uniform velocity profile, then the stagnation pressure can be described by a scalar in the data global
list and the velocity by an array in the data local list.

EXPRESS specification:

*)
ENTITY bc_data
SUBTYPE OF (condition);
data_global : OPTIONAL LIST OF data_array;
data_local : OPTIONAL LIST OF data_array;
dclass : OPTIONAL data_class;
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dimunits : OPTIONAL dimensional_units;
DERIVE
class : data_class := bcdata_class(SELF);
units : dimensional_units := bcdata_dimunits(SELF);
data_array_length : INTEGER := NVL(Dirichlet[1].data_array_length, 0) +

NVL(Neumann[1].data_array_length, 0);
INVERSE
Dirichlet : BAG [0:1] OF bc_data_set FOR Dirichlet_data;
Neumann : BAG [0:1] OF bc_data_set FOR Neumann_data;

END_ENTITY;
(*

Attribute definitions:

data global: is global data;

data local: is local data;

dclass: non-default data class;

dimunits: non-default system of units;

class: is the class of data;

units: is the system of units for the data;

data array length: is the length data arrays;

Dirichlet: is the calling bc data set which uses this bc data for Dirichlet data;

Neumann: is the calling bc data set which uses this bc data for Neumann data;

Informal propositions:

ip1: An instance of bc data shall be called in the role of either Dirichlet data or Neumann -
data.

G.5.4.7 reference state

reference state describes a reference state, which is a list of geometric or flow-state quantities
defined at a common location or condition. Examples of typical reference states associated with
CFD calculations are freestream, plenum, stagntation, inlet and exit.

The data that may be associated with reference state is listed in Table G.3.

EXPRESS specification:

*)
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Table G.3 – Data that may be associated with reference state

data name Description Units
Mach Mach number, M = q/c —
Mach velocity Velocity scale, q L/T
Mach velocity sound Speed of sound scale, c L/T
Reynolds Reynolds number, Re = V LR/ν —
Reynods velocity Velocity scale, V L/T
Reynolds length Length scale, LR L
Reynolds viscosity kinematic Kinematic viscosity scale, ν L2/T
length reference Reference length, L L

ENTITY reference_state
SUBTYPE OF (condition);
state_description : OPTIONAL STRING;
data : LIST OF data_array;
dclass : OPTIONAL data_class;
dimunits : OPTIONAL dimensional_units;

DERIVE
class : data_class :=

NVL(dclass,
inherited_class_for_refstate(data_set, bc, zone_bc, zone, base));

units : dimensional_units :=
NVL(dimunits,

inherited_units_for_refstate(data_set, bc, zone_bc, zone, base));
INVERSE
base : BAG [0:1] OF cfd_case FOR refstate;
zone : BAG [0:1] OF zone FOR refstate;
data_set : BAG [0:1] OF bc_data_set FOR refstate;
bc : BAG [0:1] OF bc FOR refstate;
zone_bc : BAG [0:1] OF zone_bc FOR refstate;

END_ENTITY;
(*

Attribute definitions:

state description: is a description of the reference state;

data: is the reference state data;

dclass: non-default data class;

dimunits: non-default dimensional units;

class: is the class of data;

units: is the system of units;
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Informal propositions:

ip1: A reference state shall be called by one and only one of: cfd case, zone, bc data set,
bc, zone bc;

ip2: The data arrays shall be consistent.

G.5.4.8 integral data

integral data provides a description of generic global or integral data that may be associated
with a particular zone or an entire database. In contrast to discrete data, integral data is not
associated with any specific field location.

EXPRESS specification:

*)
ENTITY integral_data
SUBTYPE OF (condition);
data : LIST OF data_array;
dclass : OPTIONAL data_class;
dimunits : OPTIONAL dimensional_units;

DERIVE
class : data_class :=

NVL(dclass, inherit_class_from_base_zone(base, zone));
units : dimensional_units :=

NVL(dimunits, inherit_units_from_base_zone(base, zone));
INVERSE
base : BAG [0:1] OF cfd_case FOR miscellaneous;
zone : BAG [0:1] OF zone FOR global_data;

END_ENTITY;
(*

Attribute definitions:

data: is the data;

dclass: non-default class of data;

dimunits: non-default system of units;

class: is the class of data;

units: is the system of units;

base: is the calling cfd case.

zone: is the calling zone.
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Informal propositions:

ip1: An instance of integral data shall be referenced by either a cfd case or a zone;

ip2: The data arrays shall be consistent.

G.5.5 conditions function definitions

G.5.5.1 bcdataset data array length

bcdataset data array length takes a bc data set as its single argument and returns the
length of the local data arrays.

EXPRESS specification:

*)
FUNCTION bcdataset_data_array_length(arg : bc_data_set) : INTEGER;
LOCAL
result : INTEGER := 0;

END_LOCAL;
CASE arg.GridLocation OF
Vertex : result := arg.VertexListLength;
FaceCenter,
IFaceCenter,
JFaceCenter,
KFaceCenter : result := arg.face\_center\_list\_length;

END_CASE;
RETURN(result);
END_FUNCTION;
(*

Argument definitions:

arg: A bc data set.

RETURNS: If the GridLocation is Vertex or FaceCenter or IFaceCenter or JFace-
Center or KFaceCenter the length of the local data arays are returned, otherwise zero is
returned.

G.5.5.2 bcdata class

bcdata class takes a bc data as its single argument and returns the class of data.
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EXPRESS specification:

*)
FUNCTION bcdata_class(arg : bc_data) : data_class;
LOCAL
result : data_class := ?;

END_LOCAL;
IF (EXISTS(arg.dclass)) THEN
result := arg.dclass;

ELSE
IF (EXISTS(arg.Dirichlet)) THEN
result := arg.Dirichlet[1].class;

ELSE
IF (EXISTS(arg.Neumman)) THEN
result := arg.Neumman[1].class;

END_IF;
END_IF;

END_IF;
RETURN(result);
END_FUNCTION;
(*

Argument definitions:

arg: A bc data set.

RETURNS: The data class of the bc data set.

G.5.5.3 bcdata dimunits

bcdata dimunits takes a bc data as its single argument and returns the dimensional units.

EXPRESS specification:

*)
FUNCTION bcdata_dimunits(arg : bc_data) : dimensional_units;
LOCAL
result : dimensional_units := ?;

END_LOCAL;
IF (EXISTS(arg.dimunits)) THEN
result := arg.dimunits;

ELSE
IF (EXISTS(arg.Dirichlet)) THEN
result := arg.Dirichlet[1].units;

ELSE
IF (EXISTS(arg.Neumann)) THEN
result := arg.Neumann[1].units;
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END_IF;
END_IF;

END_IF;
RETURN(result);
END_FUNCTION;
(*

Argument definitions:

arg: A bc data set.

RETURNS: The units of the bc data set.

G.5.5.4 inherit class from base zone

Given either a cfd case or a zone the function returns the class.

EXPRESS specification:

*)
FUNCTION inherit_class_from_base_zone(base : AGGREGATE OF cfd_case;

zone : AGGREGATE OF zone) : data_class;
IF (SIZEOF(base) > 0) THEN
RETURN(base[1].class);

ELSE
IF (SIZEOF(zone) > 0) THEN
RETURN(zone[1].class);

END_IF;
END_IF;
RETURN(?);

END_FUNCTION;
(*

Argument definitions:

base: A possibly empty aggregate of cfd case.

zone: A possibly empty aggregate of zone

RETURNS: The value of the class attribute for the first cfd case of the first zone. If there
is an error in the arguments, indeterminate is returned.

G.5.5.5 inherit units from base zone

Given either a cfd case or a zone the function returns the units.

c©ISO 2000 — All rights reserved 159



ISO/WD 10303-2fd:2000(E) Nxxxx

EXPRESS specification:

*)
FUNCTION inherit_units_from_base_zone(base : AGGREGATE OF cfd_case;

zone : AGGREGATE OF zone) : dimensional_units;
IF (SIZEOF(base) > 0) THEN
RETURN(base[1].units);

ELSE
IF (SIZEOF(zone) > 0) THEN
RETURN(zone[1].units);

END_IF;
END_IF;
RETURN(?);

END_FUNCTION;
(*

Argument definitions:

base: A possibly empty aggregate of cfd case.

zone: A possibly empty aggregate of zone

RETURNS: The value of the units attribute for the first cfd case of the first zone. If there
is an error in the arguments, indeterminate is returned.

G.5.5.6 inherited class for refstate

The inherited class for refstate function determines a class of data.

EXPRESS specification:

*)
FUNCTION inherited_class_for_refstate(bd : AGGREGATE OF bc_data_set;

bc : AGGREGATE OF bc;
zb : AGGREGATE OF zone_bc;
zn : AGGREGATE OF zone;
db : AGGREGATE OF cfd_case) : data_class;

IF (SIZEOF(bd) > 0) THEN RETURN(bd[1].class); END_IF;
IF (SIZEOF(bc) > 0) THEN RETURN(bc[1].class); END_IF;
IF (SIZEOF(zb) > 0) THEN RETURN(zb[1].class); END_IF;
IF (SIZEOF(zn) > 0) THEN RETURN(zn[1].class); END_IF;
IF (SIZEOF(db) > 0) THEN RETURN(db[1].class); END_IF;
RETURN(?);
END_FUNCTION;
(*
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Argument definitions:

bd: A possibly empty aggregate of bc data set;

bc: A possibly empty aggregate of bc;

zb: A possibly empty aggregate of zone bc;

zn: A possibly empty aggregate of zone;

db: A possibly empty aggregate of cfd case;

RETURNS: The value of the data class which has the highest precedence. If there is an
error in the arguments, indeterminate is returned.

G.5.5.7 inherited units for refstate

The inherited units for refstate function determines dimensional units.

EXPRESS specification:

*)
FUNCTION inherited_units_for_refstate(bd : AGGREGATE OF bc_data_set;

bc : AGGREGATE OF bc;
zb : AGGREGATE OF zone_bc;
zn : AGGREGATE OF zone;
db : AGGREGATE OF cfd_case) : dimensional_units;

IF (SIZEOF(bd) > 0) THEN RETURN(bd[1].units); END_IF;
IF (SIZEOF(bc) > 0) THEN RETURN(bc[1].units); END_IF;
IF (SIZEOF(zb) > 0) THEN RETURN(zb[1].units); END_IF;
IF (SIZEOF(zn) > 0) THEN RETURN(zn[1].units); END_IF;
IF (SIZEOF(db) > 0) THEN RETURN(db[1].units); END_IF;
RETURN(?);
END_FUNCTION;
(*

Argument definitions:

bd: A possibly empty aggregate of bc data set;

bc: A possibly empty aggregate of bc;

zb: A possibly empty aggregate of zone bc;

zn: A possibly empty aggregate of zone;

db: A possibly empty aggregate of cfd case;

RETURNS: The value of the dimensional units which has the highest precedence. If there
is an error in the arguments, indeterminate is returned.
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EXPRESS specification:

*)
END_SCHEMA; -- end of conditions
(*

G.6 equations

The following EXPRESS declaration begins the equations schema and identifies the necessary
external references.

EXPRESS specification:

*)
SCHEMA equations;
REFERENCE FROM basis;
REFERENCE FROM hierarchy;

(*

G.6.1 Introduction

This schema defines and describes governing flow-equation set associated with Navier-Stokes
CFD codes.

The graphical form for the equations schema is given in Figures G.28 through G.37.

G.6.2 Fundamental concepts and assumptions

The description of the flow-equation set includes the general class of governing equations, the
turbulent closure equations, the gas model, and the viscosity and thermal-conductivity models.
Included with each equation description are associated constants.

The structure definitions attempt to balance the opposing requirements of initial ease of imple-
mentation against requirements for extensibilty and future growth.

The intended use of these structures is primarily for archival purposes and to provide additional
documentation of the flow solution.

G.6.3 equations type definitions

G.6.3.1 turbulence data name

turbulence data name is an enumeration of standardized Reynolds-averaged Navier-Stokes
turbulence model variables.

162 c©ISO 2000 — All rights reserved



Nxxxx ISO/WD 10303-2fd:2000(E)

3,1 flow equation set 4,1 governing equations 5,1 fd model

base.textual (ABS) equation base.label
descriptions L id

1

Figure G.28 – Entity level diagram of ARM equations schema (page 1 of 10)

viscosity model type 2,6 (10)

turbulence model type 2,5 (9)

turbulence closure type 2,4 (8)

thermal conductivity model type 2,3 (7)

gas model type 2,2 (6)

governing equations type 2,1 (4)

Figure G.29 – Entity level diagram of ARM equations schema (page 2 of 10)

Turbulence model solution quantities and model constants present a particularly difficult nomen-
clature problem — to be precise it is necessary to identify both the variable and the model (and
version) that it comes from. The list (in Table 7) falls short in this respect.

EXPRESS specification:

*)
TYPE turbulence_data_name = EXTENSIBLE ENUMERATION OF ();
END_TYPE;
(*

The required identifiers and their meanings are given in Table 7.

G.6.3.2 force moment data name

force moment data name is an enumeration of standardized force and moment data.

Conventions for data-name identifiers for forces and moments are defined in this subclause.
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10,2 viscosity model

basis.dimensional units
9,2 turbulence model

basis.data class
8,2 turbulence closure

INTEGER 6,2 gas model

INTEGER
4,2 governing equations

7,2 thermal conductivity model

hierarchy.zone

hierarchy.cfd case

flow equation set

3,1 (1)

(DER) units
dimunits

(DER) class
dclass

(DER) nindices

equation dimension

thermal conductivity

(INV) zone B[0:1]

(INV) base B[0:1]

viscosity

turbulence

closure

state

equations

Figure G.30 – Entity level diagram of ARM equations schema (page 3 of 10)
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2,1 governing equations type

4,2 (3)

INTEGER

BOOLEAN

governing equations

4,1 (1)

equation type

(INV) equation set

(DER) nindices
(DER) diff

diffusion model A[1:?]

Figure G.31 – Entity level diagram of ARM equations schema (page 4 of 10)

Given a differential force ~f (i.e. a force per unit area), the force integrated over a surface is,

~F = Fxêx + Fy êy + Fz êz =
∫
~f dA,

where êx, êy and êz are the unit vectors in the x, y and z directions, respectively. The moment
about a point ~r0 integrated over a surface is,

~M = Mxêx +My êy +Mz êz =
∫

(~r − ~r0)× ~f dA.

Lift and drag components of the integrated force are,

L = ~F · L̂ D = ~F · D̂

where L̂ and D̂ are the unit vectors in the positive lift and drag directions, respectively.

Lift, drag and moment are often computed in auxiliary coordinate frames (e.g. wind axes or
stability axes). We introduce the convention that lift, drag and moment are computed in the
(ξ, η, ζ) coordinate system. Positive drag is assumed parallel to the ξ-direction (i.e. D̂ = êξ);
and positive lift is assumed parallel to the η-direction (i.e. L̂ = êη). Thus, forces and moments
defined in this auxiliary coordinate system are,

L = ~F · êη D = ~F · êξ
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10,1 viscosity model

basis.dimensional units
9,1 turbulence model

basis.data class
8,1 turbulence closure

7,1 thermal conductivity model

basis.data array
6,1 gas model

(ABS)
fd model

5,1 (1)

dimunits

dclass

data L

1

Figure G.32 – Entity level diagram of ARM equations schema (page 5 of 10)

basis.dimensional units

basis.data class

6,2 (3)

gas model

2,2 gas model type

6,1 (5)

(DER) units

(DER) class

(INV) equation set

model type

Figure G.33 – Entity level diagram of ARM equations schema (page 6 of 10)
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basis.dimensional units
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Figure G.34 – Entity level diagram of ARM equations schema (page 7 of 10)
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Figure G.35 – Entity level diagram of ARM equations schema (page 8 of 10)
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basis.dimensional units
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Figure G.36 – Entity level diagram of ARM equations schema (page 9 of 10)

~M = Mξ êξ +Mη êη +Mζ êζ =
∫

(~r − ~r0)× ~f dA.

Lift, drag and moment coefficients in 3–D are defined as,

CL =
L

1
2ρrefq

2
refS

CD =
D

1
2ρrefq

2
refS

~CM =
~M

1
2ρrefq

2
refcrefSref

,

where 1
2ρrefq

2
ref is a reference dynamic pressure, Sref is a reference area, and cref is a reference

length. For a wing, Sref is typically the wing area and cref is the mean aerodynamic chord. In
2–D, the sectional force coefficients are,

cl =
L′

1
2ρrefq

2
refcref

cd =
D′

1
2ρrefq

2
refcref

~cm =
~M ′

1
2ρrefq

2
refc

2
ref
,

where the forces are integrated along a contour (e.g. an airfoil cross-section) rather than a
surface.
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basis.dimensional units

basis.data class

10,2 (3)

viscosity model

2,6 viscosity model type

10,1 (5)

(DER) units

(DER) class

(INV) equation set

model type

Figure G.37 – Entity level diagram of ARM equations schema (page 10 of 10)

The following data-name identifiers and definitions are provided for forces and moments and
their associated coefficients. For coefficients, the dynamic pressure and length scales used in the
normalization are provided.

EXPRESS specification:

*)
TYPE force_moment_data_name = EXTENSIBLE ENUMERATION OF ();
END_TYPE;
(*

The required identifiers and their meanings are given in Table 10.

G.6.3.3 governing equations type

governing equations type is an enumeration of the classes of flow equations.

EXPRESS specification:

*)
TYPE governing_equations_type = ENUMERATION OF

(unspecified,
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user_defined,
full_potential,
Euler,
NS_laminar,
NS_turbulent,
NS_laminar_incompressible,
NS_turbulent_incompressible);

END_TYPE;
(*

Enumerated item definitions:

unspecified: is unspecified;

user defined: is specified via an external agreement between the data creator and the data
user;

full potential: is full potential flow;

Euler: is Euler flow;

NS laminar: is Navier-Stokes laminar flow;

NS turbulent: is Navier-Stokes turbulent flow;

NS laminar incompressible: is Navier-Stokes laminar incrompressible flow;

NS turbulent incompressible: is Navier-Stokes turbulent incrompressible flow;

G.6.3.4 gas model type

gas model type is an enumeration of the state models relating pressure, temperature and
density.

EXPRESS specification:

*)
TYPE gas_model_type = ENUMERATION OF

(unspecified,
user_defined,
ideal,
Van_der_Waals);

END_TYPE;
(*

Enumerated item definitions:

unspecified: is unspecified.
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user defined: is specified via an external agreement between the data creator and the data
user;

ideal: the state model is the perfect gas law. The pressure, temperature and density are related
by,

p = ρRT,

where R is the ideal gas constant. Related quantities are the specific heat at constant pressure
(cp), specific heat at constant volume (cv) and specific heat ratio (γ = cp/cv). The gas constant
and specific heats are related by R = cp − cv.

The standard data name identifiers associated with the perfect gas law are: ideal gas -
constant, specific heat ratio, specific heat volume and specific heat pressure. These
are described in clause G.3.3.12.

Van der Waals: the state model is Van der Waals’ equation.

G.6.3.5 viscosity model type

viscosity model type is an enumeration of the relationships between molecular viscosity and
temperature.

EXPRESS specification:

*)
TYPE viscosity_model_type = ENUMERATION OF

(unspecified,
user_defined,
constant_viscosity,
power_law,
Sutherland_law);

END_TYPE;
(*

Enumerated item definitions:

unspecified: is unspecified;

user defined: is specified via an external agreement between the data creator and the data
user;

constant viscosity: the molecular viscosity is constant throughout the field and is equal to
some reference value (µ = µref)

power law: the molecular viscosity follows a power-law relation,

µ = µref

(
T

Tref

)n

.
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The standard data name identifiers associated with this model are: power law exponent,
temperature reference and viscosity molecular reference. These are described in clause G.3.3.12.

Sutherland law: Sutherland’s Law for molecular viscosity,

µ = µref

(
T

Tref

)3/2
Tref + Ts

T + Ts
,

where Ts is the Sutherland Law constant, and µref and Tref are the reference viscosity and
temperature, respectively.

The standard data name identifiers associated with this model are: Sutherland law con-
stant, temperature reference and viscosity molecular reference. These are described in
clause G.3.3.12.

NOTE 1

For air [4], the power-law exponent is n = 0.666, Sutherlands Law constant (Ts) is 110.6 K, the reference
temperature (Tref) is 273.15 K, and the reference viscosity (µref) is 1.716× 10−5 kg/(m s).

G.6.3.6 thermal conductivity model type

thermal conductivity model type is an enumeration of the relationships between the thermal-
conductivity coefficient and temperature.

EXPRESS specification:

*)
TYPE thermal_conductivity_model_type = ENUMERATION OF

(unspecified,
user_defined,
constant_Prandtl,
power_law,
Sutherland_law);

END_TYPE;
(*

Enumerated item definitions:

unspecified: is unspecified;

user defined: is specified via an external agreement between the data creator and the data
user;

constant Prandtl: the Prandtl number (Pr = µcp/k) is constant and equal to some reference
value.

The standard data name identifier associated with this model is constant Prandtl, and is
described in clause G.3.3.12.
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power law: the thermal conductivity is related to temperature via a power-law.

k = kref

(
T

Tref

)n

.

The standard data name identifiers associated with this model are: power law exponent,
temperature reference and thermal conductivity reference. These are described in clause G.3.3.12.

Sutherland law: Sutherland’s Law for thermal conductivity.

k = kref

(
T

Tref

)3/2
Tref + Ts

T + Ts
,

where Ts is the Sutherland Law constant, and kref and Tref are the reference thermal conduc-
tivity and temperature, respectively.

The standard data name identifiers associated with this model are: Sutherland law con-
stant, temperature reference and thermal conductivity molecular reference. These
are described in clause G.3.3.12.

NOTE 1

For air [4], the Prandtl number is Pr = 0.72, the power-law exponent is n = 0.81, Sutherlands Law con-
stant (Ts) is 194.4 K, the reference temperature (Tref) is 273.15 K, and the reference thermal conductivity
(kref) is 2.414× 10−2 kg m/(s3K).

G.6.3.7 turbulence closure type

turbulence closure type is an enumeration of the kinds of turbulence closure for the Reynolds
stress terms of the Navier-Stokes equations.

EXPRESS specification:

*)
TYPE turbulence_closure_type = ENUMERATION OF

(unspecified,
user_defined,
eddy_viscosity,
Reynolds_stress,
Reynolds_stress_algebraic);

END_TYPE;
(*

Enumerated item definitions:

unspecified: is unspecified;
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user defined: is specified via an external agreement between the data creator and the data
user;

eddy viscosity: Boussinesq eddy-velocity closure. The Reynolds stresses are approximated as
the product of an eddy viscosity (νt) and the mean strain tensor. Using indicial notation, the
relation is,

−ui′uj ′ = νt

(
∂ui

∂xj
+
∂uj

∂xi

)
where −ui′uj ′ are the Reynolds stresses.

Reynolds stress: no approximation of the Reynolds stresses.

Reynolds stress algebraic: an algebraic approximation for the Reynolds stresses based on
some intermediate transport quantities.

The associated standard data name name identifiers are: eddy viscosity and Prandtl -
turbulent. These are described in clause G.3.3.12.

G.6.3.8 turbulence model type

turbulence model type is an enumeration of the equation sets for modeling the turbulence
quantities.

EXPRESS specification:

*)
TYPE turbulence_model_type = ENUMERATION OF

(unspecified,
user_defined,
algebraic_Baldwin_Lomax,
algebraic_Cebeci_Smith,
half_equation_Johnson_King,
one_equation_Baldwin_Barth,
one_equation_Spalart_Allmaras,
two_equation_Jones_Launder,
two_equation_Menter_SST,
two_equation_Wilcox);

END_TYPE;
(*

Enumerated item definitions:

unspecified: is unspecified;

user defined: is specified via an external agreement between the data creator and the data
user;
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algebraic Baldwin Lomax: is Baldwin-Lomax;

algebraic Cebeci Smith: is Cebeci-Smith;

half equation Johnson King: is Johnson-King;

one equation Baldwin Barth: is Baldwin-Barth;

one equation Spalart Allmaras: is Spalart-Allmaras;

two equation Jones Launder: is Jones-Launder;

two equation Menter SST: is Menter;

two equation Wilcox: is Wilcox.

The associated standard data name name identifiers for the Spalart-Allmaras turbulence
model (version Ia) are: turbulent SA cb1, turbulent SA cb2, turbulent SA sigma, tur-
bulent SA kappa, turbulent SA cw1, turbulent SA cw2, turbulent SA cw3, turbu-
lent SA cv1, turbulent SA ct1, turbulent SA ct2, turbulent SA ct3, and turbulent -
SA ct4. These are described in clause G.3.3.12.

G.6.4 equations entity definitions

G.6.4.1 equation

A equation represents the concept of a mathematical formulation of a physics phenonema.

EXPRESS specification:

*)
ENTITY equation;
descriptions : OPTIONAL LIST OF textual;
id : label;

END_ENTITY;
(*

Attribute definitions:

descriptions: is annotation;

id: User-specified instance identifier;

G.6.4.2 flow equation set

flow equation set is a general description of governing flow equations. It includes the dimen-
sionality of the governing equations.
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EXPRESS specification:

*)
ENTITY flow_equation_set
SUBTYPE OF (equation);
dimension : OPTIONAL INTEGER;
equations : OPTIONAL governing_equations;
state : OPTIONAL gas_model;
viscosity : OPTIONAL viscosity_model;
thermal_conductivity : OPTIONAL thermal_conductivity_model;
closure : OPTIONAL turbulence_closure;
turbulence : OPTIONAL turbulence_model;
dclass : OPTIONAL data_class;
dimunits : OPTIONAL dimensional_units;

DERIVE
nindices : INTEGER := NVL(base[1].nindices, 0) +

NVL(zone[1].nindices, 0);
class : data_class :=

NVL(dclass, inherit_class_from_base_zone(base, zone));
units : dimensional_units :=

NVL(dimunits, inherit_units_from_base_zone(base, zone));
INVERSE
base : BAG [0:1] OF cfd_case FOR equations;
zone : BAG [0:1] OF zone FOR equations;

END_ENTITY;
(*

Attribute definitions:

dimension: is the dimensionality of the governing equations; it is the number of spatial vari-
ables describing the flow.

equations: describes the general class of equations.

state: describes the equation of state.

viscosity: describes the auxiliary relations for molecular viscosity.

thermal conductivity: describes the auxiliary relations for the thermal conductivity coeffi-
cient.

closure: describes the turbulent closure for Reynolds-averaged Navier-Stokes equations.

turbulence: describes the turbulence model for Reynolds-averaged Navier-Stokes equations.

dclass: non-default class of data;

dimunits: non-default system of units;

class: is the class of data contained in the flow equation set.

units: is the system of units.
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nindices: The number of indices required to reference a node.

base: is the calling calling cfd case;

zone: is the calling calling zone;

Informal propositions:

ip1: A flow equation set shall be called by either a cfd case or by a zone.

G.6.4.3 governing equations

governing equations describes the class of governing flow equations associated with the solu-
tion.

EXPRESS specification:

*)
ENTITY governing_equations
SUBTYPE OF (equation);
equation_type : governing_equations_type;
diffusion_model : OPTIONAL ARRAY [1:diff] OF BOOLEAN;

DERIVE
nindices : INTEGER := equation_set.nindices;
diff : INTEGER := (nindices**2 + nindices)/2;

INVERSE
equation_set : flow_equation_set FOR equations;

END_ENTITY;
(*

Attribute definitions:

equation type: is the kind of equation;

diffusion model: describes the viscous diffusion terms modelled in the flow equations, and is
applicable only to Navier-Stokes equations. Typically, thin-layer approximations include only the
diffusion terms in one or two computational-coordinate directions. diffusion model encodes
the coordinate directions that include second-derivative and cross-derivative diffusion terms.
The first dimension elements are second-derivative terms and the remainder elements are cross-
derivative terms. A value of TRUE indicates the diffusion term is modelled, and FALSE indicates
that it is not modelled. In 3–D, the encoding of diffusion model is given in Table G.4, where
derivatives in the i, j and k computational-coordinates are ξ, η and ζ, respectively.

EXAMPLE 1 The full Navier-Stokes equations in 3–D are indicated by:
diffusion model = [TRUE,TRUE,TRUE,TRUE,TRUE,TRUE] while the thin-layer equations including only
diffusion in the j-direction are indicated by:
diffusion model = [FALSE,TRUE,FALSE,FALSE,FALSE,FALSE].
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Table G.4 – Encoding of the 3-D diffusion model

Element Modelled terms
n = 1 diffusion terms in i (∂2/∂ξ2)
n = 2 diffusion terms in j (∂2/∂η2)
n = 3 diffusion terms in k (∂2/∂ζ2)
n = 4 cross-diffusion terms in i-j (∂2/∂ξ∂η and ∂2/∂η∂ξ)
n = 5 cross-diffusion terms in j-k (∂2/∂η∂ζ and ∂2/∂ζ∂η)
n = 6 cross-diffusion terms in k-i (∂2/∂ζ∂ξ and ∂2/∂ξ∂ζ)

nindices: The number of indices required to reference a node.

diff: is the number of elements in diffusion model. For 1-D this is one, for 2-D it is three,
and for 3-D it is six.

equation set: is the calling flow equation set.

G.6.4.4 fd model

EXPRESS specification:

*)
ENTITY fd_model
SUBTYPE OF (equation);
data : OPTIONAL LIST OF data_array;
dclass : OPTIONAL data_class;
dimunits : OPTIONAL dimensional_units;

END_ENTITY;

SUBTYPE_CONSTRAINT sc1_fd_model FOR fd_model;
ABSTRACT SUPERTYPE;
ONEOF(gas_model,

thermal_conductivity_model,
turbulence_closure,
turbulence_model,
viscosity_model);

END_SUBTYPE_CONSTRAINT;
(*

Attribute definitions:

data: is the data;

dclass: is non-default class of data;

dimunits: is non-default dimensional units.
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Informal propositions:

ip1: The data shall be consistent.

G.6.4.5 gas model

gas model describes the equation of state model used in the governing equations to relate
pressure, temperature and density.

EXPRESS specification:

*)
ENTITY gas_model
SUBTYPE OF (fd_model);
model_type : gas_model_type;

DERIVE
class : data_class :=

NVL(SELF\fd_model.dclass, equation_set.class);
units : dimensional_units :=

NVL(SELF\fd_model.dimunits, equation_set.units);
INVERSE
equation_set : flow_equation_set FOR state;

END_ENTITY;
(*

Attribute definitions:

model type: is the particular equation of state model.

class: is the class of data;

units: is the dimensional units;

equation set: is the calling flow equation set.

G.6.4.6 thermal conductivity model

thermal conductivity model describes the model for relating the thermal-conductivity coef-
ficient (k) to temperature.

EXPRESS specification:

*)
ENTITY thermal_conductivity_model
SUBTYPE OF (fd_model);
model_type : thermal_conductivity_model_type;
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DERIVE
class : data_class :=

NVL(SELF\fd_model.dclass, equation_set.class);
units : dimensional_units :=

NVL(SELF\fd_model.dimunits, equation_set.units);
INVERSE
equation_set : flow_equation_set FOR thermal_conductivity;

END_ENTITY;
(*

Attribute definitions:

model type: is the particular model type.

class: is the class of data;

units: is the dimensional units;

equation set: is the calling flow equation set.

G.6.4.7 turbulence closure

turbulence closure describes the turbulence closure for the Reynolds stress terms of the
Navier-Stokes equations.

EXPRESS specification:

*)
ENTITY turbulence_closure
SUBTYPE OF (fd_model);
closure_type : turbulence_closure_type;

DERIVE
class : data_class :=

NVL(SELF\fd_model.dclass, equation_set.class);
units : dimensional_units :=

NVL(SELF\fd_model.dimunits, equation_set.units);
INVERSE
equation_set : flow_equation_set FOR closure;

END_ENTITY;
(*

Attribute definitions:

closure type: is the particular closure type.

class: is the class of data;

units: is the dimensional units;
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equation set: is the calling flow equation set.

G.6.4.8 turbulence model

turbulence model describes the equation set used to model the turbulence quantities.

.

EXPRESS specification:

*)
ENTITY turbulence_model
SUBTYPE OF (fd_model);
model_type : turbulence_model_type;
diffusion_model : OPTIONAL ARRAY [1:diff] OF BOOLEAN;

DERIVE
class : data_class :=

NVL(SELF\fd_model.dclass, equation_set.class);
units : dimensional_units :=

NVL(SELF\fd_model.dimunits, equation_set.units);
nindices : INTEGER := equation_set.nindices;
diff : INTEGER := (nindices**2 + nindices)/2;

INVERSE
equation_set : flow_equation_set FOR turbulence;

END_ENTITY;
(*

Attribute definitions:

model type: is the particular equation set;

diffusion model: is the description of the viscous diffusion terms included in the turbulent
transport model equations;

class: is the class of data;

units: is the dimensional units;

nindices: The number of indices required to reference a node.

diff: is the number of elements in diffusion model. For 1-D this is one, for 2-D it is three,
and for 3-D it is six.

equation set: is the calling flow equation set.

G.6.4.9 viscosity model

viscosity model describes the model for relating molecular viscosity (µ) to temperature.
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EXPRESS specification:

*)
ENTITY viscosity_model
SUBTYPE OF (fd_model);
model_type : viscosity_model_type;

DERIVE
class : data_class :=

NVL(SELF\fd_model.dclass, equation_set.class);
units : dimensional_units :=

NVL(SELF\fd_model.dimunits, equation_set.units);
INVERSE
equation_set : flow_equation_set FOR viscosity;

END_ENTITY;
(*

Attribute definitions:

model type: is the particular equation of state model.

class: is the class of data;

units: is the dimensional units;

equation set: is the calling flow equation set.

EXPRESS specification:

*)
END_SCHEMA; -- end of equations
(*

G.7 results

The following EXPRESS declaration begins the results schema and identifies the necessary
external references.

EXPRESS specification:

*)
SCHEMA results;
REFERENCE FROM basis;
REFERENCE FROM hierarchy;

(*
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2,1 flow solution 3,1 convergence history 4,1 discrete data

base.textual (ABS) result base.label
descriptions L id

Figure G.38 – Entity level diagram of ARM results schema (page 1 of 4)

G.7.1 Introduction

This schema defines and describes flow solution data and other data resulting from a CFD
analysis.

The graphical form for the results schema is given in Figures G.38 through G.41.

G.7.2 Fundamental concepts and assumptions

The principal result of a CFD analysis is the flow solution data over the computational grid.

Other data, such as equation residuals, can also form part of the results.

G.7.3 results type definitions

G.7.3.1 flow solution data name

flow solution data name is an enumeration of standardized flow solution data.

This clause describes data-name identifiers for typical Navier-Stokes solution variables. The list
is obviously incomplete, but should suffice for initial implementation of the CFD system. The
variables listed in this section are dimensional or raw quantities; nondimensional parameters
and coefficients based on these variables are discussed in G.3.3.14.

A reasonably universal notation is used for state variables. Static quantities are measured with
the fluid at speed: static density (ρ), static pressure (p), static temperature (T ), static internal
energy per unit mass (e), static enthalpy per unit mass (h), entropy (s), and static speed of
sound (c). The true entropy isaa approximated by the function s̃ = p/ργ (this assumes an ideal
gas). The velocity is ~q = uêx + vêy +wêz, with magnitude q =

√
~q ·~q. Stagnation quantities are

obtained by bringing the fluid isentropically to rest; these are identified by a subscript ‘0’. The
term ‘total’ is also used to refer to stagnation quantities.
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INTEGER
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basis.data class
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rind
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gridloc

Figure G.39 – Entity level diagram of ARM results schema (page 2 of 4)

Conservation variables are density, momentum (ρ~q = ρuêx+ρvêy+ρwêz), and stagnation energy
per unit volume (ρe0).

Molecular diffusion and heat transfer introduce the molecular viscosity (µ), kinematic viscosity
(ν) and thermal conductivity coefficient (k). These are obtained from the state variables through
auxiliary correlations. For a perfect gas, µ and k are functions of static temperature only.

The Navier-Stokes equations involve the strain tensor (¯̄S) and the shear-stress tensor (¯̄τ). Using
indicial notation, the 3–D cartesian components of the strain tensor are,

¯̄Si,j =

(
∂ui

∂xj
+
∂uj

∂xi

)
,
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STRING
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Figure G.40 – Entity level diagram of ARM results schema (page 3 of 4)
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Figure G.41 – Entity level diagram of ARM results schema (page 4 of 4)

and the stress tensor is,

¯̄τ i,j = µ

(
∂ui

∂xj
+
∂uj

∂xi

)
+ λ

∂uk

∂xk
,

where (x1, x2, x3) = (x, y, z) and (u1, u2, u3) = (u, v, w). The bulk viscosity is usually approxi-
mated as λ = −2/3µ.

Reynolds averaging of the Navier-Stokes equations introduce Reynolds stresses (−ρu′v′, etc.)
and turbulent heat flux terms (−ρu′e′, etc.), where primed quantities are instantaneous fluctu-
ations and the bar is an averaging operator. These quantities are obtained from auxiliary tur-
bulence closure models. Reynolds-stress models formulate transport equations for the Reynolds
stresses directly; whereas, eddy-viscosity models correlate the Reynolds stresses with the mean
strain rate,

−u′v′ = νt

(
∂u

∂y
+
∂v

∂x

)
,

where νt is the eddy viscosity. The eddy viscosity is either correlated to mean flow quantities
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by algebraic models or by auxiliary transport models. An example two-equation turbulence
transport model is the k-ε model, where transport equations are formulated for the turbulent
kinetic energy (k = 1

2(u′u′ + v′v′ + w′w′)) and turbulent dissipation (ε).

Skin friction evaluated at a surface is the dot product of the shear stress tensor with the surface
normal:

~τ = ¯̄τ ·n̂,

Note that skin friction is a vector.

EXPRESS specification:

*)
TYPE flow_solution_data_name = EXTENSIBLE ENUMERATION OF ();
END_TYPE;
(*

The required identifiers and their meanings are given in Table 6.

G.7.4 results entity definitions

G.7.4.1 result

A result represents the concept of a solution to an analysis problem and/or other data resulting
from an analysis.

EXPRESS specification:

*)
ENTITY result;
descriptions : OPTIONAL LIST OF textual;
id : label;

END_ENTITY;

SUBTYPE_CONSTRAINT sc1_result FOR result;
ABSTRACT SUPERTYPE;
ONEOF(flow_solution,

convergence_history,
discrete_data);

END_SUBTYPE_CONSTRAINT;
(*

Attribute definitions:

descriptions: is annotation;
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id: User-specified instance identifier;

G.7.4.2 flow solution

The flow solution within a given zone is described by the flow solution structure. This structure
contains a list of the data arrays of the individual flow solution variables, as well as identifying
the grid location of the solution. It also provides a mechanism for identifying rind-point data
included within the data arrays.

EXPRESS specification:

*)
ENTITY flow_solution
SUBTYPE OF (result);
rind : OPTIONAL rind;
data : OPTIONAL LIST OF data_array;
gridloc : OPTIONAL grid_location;
dclass : OPTIONAL data_class;
dimunits : OPTIONAL dimensional_units;

DERIVE
nindices : INTEGER := zone.nindices;
class : data_class := NVL(dclass, zone.class);
units : dimensional_units := NVL(dimunits, zone.units);
vertex_count : ARRAY [1:nindices] OF INTEGER := zone.vertex_count;
cell_count : ARRAY [1:nindices] OF INTEGER := zone.cell_count;
location : grid_location := NVL(gridloc, vertex);

INVERSE
zone : zone FOR solution;

END_ENTITY;
(*

Attribute definitions:

rind: is the number of rind planes included in the data.

data: is the data. Each structure in the list contains a single component of the solution vector.

gridloc: is the non-default kind of grid location;

dclass: non-default class of data;

dimunits: non-default system of units;

nindices: The number of indices required to reference a node.

class: is the default class for data in data arrays.

units: is the description of the system of units.

vertex count: is the numbers of core vertices in each index direction.
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cell count: is the numbers of core cells in each index direction.

location: specifies the location of the solution data with respect to the grid. All data within a
given instance of flow solution resides at the same kind of grid location.

zone: is the zone.

Informal propositions:

ip1: The rind nindices shall match the flow solution nindices

ip2: A flow solution of an unstructured zone shall not have a value for rind, as it is meaningless
in this case.

ip3: The data shall be consistent.

ip4: The grid location shall be either at a vertex or a cell centre.

G.7.4.3 convergence history

Flow solver convergence history information is described by the convergence history struc-
ture.

Measures used to record convergence vary greatly among current flow-solver implementations.
Convergence information typically includes global forces, norms of equation residuals, and norms
of solution changes.

NOTE 1 Attempts to systematically define a set of convergence measures have been futile. For global
parameters, such as forces and moments, clause G.3.3.12 provides a set of standarized data-array identi-
fiers. For equation residuals and solution changes, no such standard list exists. Therefore, adhoc data -
name has to be used as the data-array identifier. It is suggested that identifiers for norms of equation
residuals begin with RSD, and those for solution changes begin with CHG. For example, ‘RSDMass-
RMS’ could be used for the L2-norm (RMS) of mass conservation residuals.

EXPRESS specification:

*)
ENTITY convergence_history
SUBTYPE OF (result);
norm_definitions : OPTIONAL STRING;
iterations : INTEGER;
data : LIST OF data_array;
dclass : OPTIONAL data_class;
dimunits : OPTIONAL dimensional_units;

DERIVE
class : data_class :=

NVL(dclass, inherit_class_from_base_zone(base, zone));
units : dimensional_units :=
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NVL(dimunits, inherit_units_from_base_zone(base, zone));
INVERSE
base : BAG [0:1] OF cfd_case FOR history;
zone : BAG [0:1] OF zone FOR history;

END_ENTITY;
(*

Attribute definitions:

norm definitions: is a description of the convergence information recorded as data;

iterations: is the number of iterations for which convergence information is recorded;

data: is convergence history data;

dclass: non-default class of data;

dimunits: non-default system of dimensional units;

class: is the class of data;

units: is the system of dimensional units;

base: is the referencing database;

zone: is the referencing zone.

Informal propositions:

ip1: A convergence history instance shall be called by either a cfd case or a zone;

ip2: The data arrays shall be consistent.

G.7.4.4 discrete data

discrete data provides a description of generic discrete data (i.e., data defined on a compu-
tational grid); it is identical to flow solution except for its entity name. This structure can
be used to store field data, such as fluxes or equation residuals, that is not typically considered
part of the flow solution.

EXPRESS specification:

*)
ENTITY discrete_data
SUBTYPE OF (result);
gridloc : OPTIONAl grid_location;
rind : OPTIONAL rind;
data : LIST OF data_array;
dclass : OPTIONAL data_class;
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dimunits : OPTIONAL dimensional_units;
DERIVE
location : grid_location := NVL(gridloc, vertex);
class : data_class := NVL(dclass, zone.class);
units : dimensional_units := NVL(dimunits, zone.units);
nindices : INTEGER := zone.nindices;
vertex_count : ARRAY [1:nindices] OF INTEGER := zone.vertex_count;
cell_count : ARRAY [1:nindices] OF INTEGER := zone.cell_count;

INVERSE
zone : zone FOR field_data;

END_ENTITY;
(*

Attribute definitions:

gridloc: non-default grid location;

rind: is the Rind planes; if absent then it is equivalent to having an instance of Rind whose
RindPlanes array contains all zeroes.

data: is the data;

dclass: non-default data class;

dimunits: non-default dimensional units;

location: is the location of data with respect to the grid;

class: is the class of data;

units: is the system of dimensional units;

nindices: The number of indices required to reference a node.

vertex count: is the number of core vertices in each index direction;

cell count: is the number of core cells in each index direction;

zone: is the calling zone.

Informal propositions:

ip1: The nindices of rind shall match the discrete data nindices.

ip2: Discrete data for an unstructured zone shall not have a value for rind, as it is meaningless
in this case.

ip3: The data arrays shall be consistent.

ip4: The grid location shall be either a vertex or a cell centre.

ip5: All data contained within this structure shall be defined at the same grid location and have
the same amount of rind-point data.
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EXPRESS specification:

*)
END_SCHEMA; -- end of results
(*
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Annex H
(informative)

AIM EXPRESS-G

(TBD — FIGURE RANGE) correspond to the AIM EXPRESS expanded listing given in
annex A. The diagrams use the EXPRESS-G graphical notation for the EXPRESS language.
EXPRESS-G is defined in annex D of ISO 10303-11.
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Annex J
(informative)

AIM EXPRESS listing

This annex references a listing of the EXPRESS entity names and corresponding short names as
specified in the AIM this part of ISO 10303. It also references a listing of each EXPRESS schema
specified in the AIM of this part of ISO 10303, without comments or other explanatory text.
These listings are available in computer-interpretable form and can be found at the following
URLs:

Short names: <(TBD---SHORT)>
EXPRESS: <(TBD---EXPRESS)>

If there is difficulty accessing these sites contact ISO Central Secretariat or contact the ISO
TC 184/SC4 Secretariat directly at: sc4sec@cme.nist.gov.

NOTE The information provided in computer-interpretable form at the above URLs is informative.
The information that is contained in the body of this part of ISO 10303 is normative.
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Annex K
(informative)

Application protocol usage guide
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Annex L
(informative)

Technical discussions
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